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Abstract: From the infinite matrix of right-angled triangles, series of triangles are found that approach a right-angled 

triangle that has one irrational side such as the 45° triangle.  This allows for the creation of a series of fractions that have as 

their limit an irrational number.  Formulae for finding the next triangle in the triangle series, and thus the next fraction in 

the fraction series, are also developed.  Such a series can be found for the square root of every uneven number that is not a 

perfect square, and for those of some of the even numbers as well. 
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1. Introduction 

Having established defining indices that position all pri-

mitive right-angled triangles in an infinite two-dimensional 

matrix [1], which may be defined as the universal set, we 

have gone about finding subsets of right-angled triangles 

that are very similar in proportion.  The obvious place to 

start is to find triangles that approximate the 45º triangle, 

and the 30/60º triangle that are the standard set squares.  

This quest has led to finding and defining series of primi-

tive right-angled triangles that in proportion converge to the 

said triangles which have irrational proportions between all 

but one pair of sides.  This also gives rise to series of frac-

tions that converge to an irrational number. 

2. Approximations to the 45º Triangle 

In the previous paper [1] it has been established that all 

primitive right-angled triangles are comprised of an un-

even-numbered leg (u), an even-numbered leg (e) and the 

hypotenuse (h) which in itself is uneven-numbered (all va-

riables are positive integers). This eliminates the possibility 

of having the 45º triangle as part of the subset of approx-

imating primitive right-angled triangles.  This is well 

known in any case, since the hypotenuse is √2, which is an 

irrational number, disqualifying it from the set of primitive 

right-angled triangles. 

Let us define the subset of triangles, and then set about 

finding them.  Let us define them in terms of the indices (i,j) 

developed in the previous paper [1].  We define the subset 

of triangles (A) as follows: 

A={(i,j)| u = i2 + ij,  e = j2/2 + ij,  h2 = u2+e2,  and |e - u| = 1, 

where (i + 1)/2 and j/2∈�} 

In the definition of the subset of triangles (A), an arbi-

trary value of 1 was chosen as the limit to the difference 

between the legs of the triangle.  It does not take long to 

realise that such triangles exist, since the most well known 

primitive right-angled triangle, the 3/4/5-triangle [(i,j) = 

(1,2)], is one where 4 – 3 = 1.  A closer look at the matrix 

of triangles shows that finding others is not such a daunting 

task, since for every i, uj=2-∞ is an arithmetic sequence with 

the interval being equal to 2i.  On the other hand, ej=2-∞ is a 

series with quadratic properties, since the interval in the 

series is defined by [(j + 2)
2
 - j

2
]/2 + 2i, which increases as j 

increases.  Since for all cases except where i = 1, the series 

begins with e smaller than u, and since the intervals for e in 

a series are increasing quadratically, e will pass the value of 

u somewhere in the series.  The task is therefore to find the 

place in each series where e passes u, enabling the easy 

identification of a case where |e - u| = 1. 

The 3/4/5-triangle [(i,j) = (1,2)] belongs to the first series 

(i = 1).  The second series, where i = 3, also has such a tri-

angle:  21/20/29-triangle [(i,j) = (3,4)].  The third series (i = 

5) does not have such a triangle:  for (i,j) = (5,6), e (48) is 

less than u (55), by 7;  and for (i,j) = (5,8), e (72) is greater 

than u (65) by 7.  The fourth series (i = 7), in turn, has such 

a triangle again:  119/120/169-triangle [(i,j) = (7,10)].  The 

next series to have a qualifying triangle is the ninth (i = 17):  

697/696/985-triangle [(i,j) = (17,24)].  We thus see that this 
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subset of primitve right-angled triangles exists. 

This subset of triangles may be ordered according to the 

numerical values of (i,j), forming a series of triangles.  The 

size of the triangles increases in the series.  Since the series 

is defined as having the legs u and e, differing by 1 only, 

the difference becomes less significant as the triangles in-

crease in size.  This means that the legs are more and more 

equal as the series progresses, and the triangles resemble 

the 45º triangle more and more.  This also means that the 

ratio between h and u or e better and better approximates 

√2  as the series progresses. 

As the series progresses, the interval from i to the next i, 

containing such a triangle also increases, making it more 

and more difficult to systematically and manually find the 

next member in the series.  The question then arises:  Is 

there a mathematical equation that defines this series of 

triangles, so that they may be determined algebraically?  

Having systematically found the first few triangles in the 

series, an investigation of (i,j) reveals an algebraic pattern: 

For the series (i,j)n, (i,j)n+1 = (in + jn, 2in + jn)                  (1) 

Table 1 contains the first fifteen triangles in this series, 

the latter part having been calculated by the above formula.  

Also included is √2, and the calculated approximation to 

√2 , offered by each respective triangle.  As the series 

progresses, the approximation improves, as indicated by the 

underlined digits that coincide with √2.  The ratio of j/i is 

also included to show that it yields a series that also ap-

proximates a number, which happens to also be √2, but for 

another reason, which will come to light later in this paper. 

Table 1. The series of triangles (i,j)n that have as their limit the 45º triangle. 

n i j u e h 
h/e  �√�� 

1.4142135623730950 
j/i 

1 1 2 3 4 5 1.25 2 

2 3 4 21 20 29 1.45 1.333333333333 

3 7 10 119 120 169 1.4083333333333333 1.428571428571 

4 17 24 697 696 985 1.4152298850574713 1.411764705882 

5 41 58 4059 4060 5741 1.4140394088669951 1.414634146341 

6 99 140 23661 23660 33461 1.4142434488588335 1.414141414141 

7 239 338 137903 137904 195025 1.4142084348532312 1.414225941423 

8 577 816 803761 803760 1136689 1.4142144421220265 1.414211438475 

9 1393 1970 4684659 4684660 6625109 1.4142134114322064 1.414213926777 

10 3363 4756 27304197 27304196 38613965 1.4142135882704622 1.414213499851 

11 8119 11482 159140519 159140520 225058681 1.4142135579298095 1.414213573100 

12 19601 27720 927538921 927538920 1311738121 1.4142135631354423 1.414213560533 

13 47321 66922 5406093003 5406093004 7645370045 1.4142135622422969 1.414213562689 

14 114243 161564 31509019101 31509019100 44560482149 1.4142135623955365 1.414213562319 

15 275807 390050 183648021599 183648021600 259717522849 1.4142135623692447 1.414213562382 

 

An interesting observation is that when n is uneven, u is 

less than e by 1, and when n is even, u is greater than e by 1.  

Another observation is that a similar series of rational 

numbers leading to √2 is h/u. 

Having defined (i,j)n+1 in terms of in and jn, we can now 

define the sides of the triangle (u,e,h)n+1 in terms of in and jn, 

[(2), (6) and (8) respectively] and then in terms of un, en and 

hn [(5), (7) and (9) respectively].  This calls for a good ex-

ercise in algebra, which sometimes includes factorisation: 

un+1 = �	
�
� 
 �	
��	
� (u = i

2
 + ij) 

 = ��	 
 �	�� 
 ��	 
 �	��2�	
�	� [(i,j)n+1 = (in+jn, 2in+jn)]                                        (1) 

 = �	
� 
 2�	�	 
 �	

� 
 2�	
� 
 3�	�	 
 �	

�  

 = 3�	
� 
 5�	�	 
 2�	

� (2) 

However  h = �� 
 � by definition [1] 

∴i = √� � � (3) 
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and e = �� 
 ��/2 by definition (see also ref [1]) 

∴ 2e =2�√� � � 
 �� (3) 

∴ 0 = �� 
 2�√� � � � 2�  

∴j 
= 

��√���
�������
��
�

 
roots of a quadratic equation 

 
= 

��√���
�√���
��
�

 
 

 = √� 
 � � √� � � (4) 

∴un+1 = 3���	 � �	�
�


 5��	 � �	 · ���	 
 �	 � ��	 � �	� 
 2���	 
 �	 � ��	 � �	�
�
 

(2), (3) and (4) 

 = 3�	 � 3�	 
 5���	
� � �	

� � �	 
 �	� 
 2��	 
 �	 � 2��	
� � �	

�  
  �	 � �	� 

 = 3�	 � 3�	 
 5��	 � �	 
 �	� 
 2�2�� � 2�	�      by Pythagorus 

 = 2�	 
 2�	 
 �	 (5) 

en+1 = �	
�
� /2 
 �	
��	
� (e = j

2
/2 + ij) 

∴2en+1 = �2�	 
 �	�� 
 2��	 
 �	��2�	 
 �	� [(i,j)n+1 = (in+jn, 2in+jn)]  (1) 

 = 4�	
� 
 4�	�	 
 �	

� 
 4�	
� 
 6�	�	 
 2�	

� 

 = 8�	
� 
 10�	�	 
 3�	

�  

 = �4�	 
 3�	��2�	 
 �	� (6) 

 = %4��	 � �	 
 3���	 
 �	 � ��	 � �	�&�2��	 � �	 
 ��	 
 �	 � ��	 � �	� 

(3) and (4) 

 = ���	 � �	 
 3��	 
 �	����	 � �	 
 ��	 
 �	� 

 = �	 � �	 
 4�	 
 3�	 
 3�	 by Pythagorus and diff. of squares 

 = 4�	 
 2�	 
 4�	  

∴en+1 = 2�	 
 �	 
 2�	 (7) 

hn+1 = �	
�
� 
 �	
��	
� 
 �	
�

� /2 (h = i
2
 + ij +j

2
/2) 

 = �	
� 
 �	
�
�  (e = j

2
/2 + ij) 

2hn+1 = 8�	
� 
 10�	�	 
 3�	

� 
 2�	
� 
 4�	�	 
 2�	

� [(i,j)n+1 = (in+jn, 2in+jn)]  (1) and (6) 

 = 10�	
� 
 14�	�	 
 5�	

� (8) 

 = 10���	 � �	�
�


 14��	 � �	 · ���	 
 �	 � ��	 � �	� 
 5���	 
 �	 � ��	 � �	�
�
 

(3) and (4) 

 = 10�	 � 10�	 
 14���	
� � �	

� � �	 
 �	� 
 5��	 
 �	 � 2��	
� � �	

� 
 �	 � �	� 

 = 10�	 � 10�	 
 14��	 � �	 
 �	� 
 5�2�	 � 2�	�      by Pythagorus 

 = 6�	 
 4�	 
 4�	  

∴hn+1 = 3�	 
 2�	 
 2�	 (9) 

It takes more algebra to solve for h in terms of h only, etc.  

It is especially complicated with the even leg being greater 

than the uneven leg for the uneven positional-numbered 

members of the series, and the even leg being less than the 

uneven leg for the even positional-numbered members of 

the series. 

hn+1= 6hn – hn-1          (10) 

For the next even positional-numbered member of the 

series (n + 1 as even): 
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en+1= 6en – en-1 – 4                (11) 

and un+1= 6un – un-1 + 4                   (12) 

And for the next uneven positional-numbered members 

of the series (n + 1 as uneven): 

en+1= 6en – en-1 + 4                (13) 

and un+1= 6un – un-1 - 4                   (14) 

Since both the e and the u legs may be used for calculat-

ing √2, the legs may be dealt with as the greater number 

and the lesser number, irrespective of whether they are 

even or uneven.  This simplifies the formulae to one each 

for each leg. Let the lesser leg be l, and the greater leg g, 

then: 

gn+1 = 6gn – gn-1 – 2 (15) 

and ln+1 = 6ln – ln-1 + 2 (16) 

Now, the simple formulae for a series of rational num-

bers that have the square √2 as their limit are the following:

For the greater numbers:  
�'()
*'()

    

 

where h1 = 5, h2 = 29, hn+1 = 6hn – hn-1, 

 And g1 = 4, g2 = 21, gn+1 = 6gn – gn-1 – 2. (17) 

For the lesser numbers:  
�'()
+'()

  where h1 = 5, h2 = 29, hn+1 = 6hn – hn-1, 

 andl1 = 3, l2 = 20, ln+1 = 6ln – ln-1 + 2. (18) 

   

3. Approximations to the 60º Triangle 

The 60º triangle is one half of a bisected equilateral tri-

angle with sides of 2 units.  The hypotenuse, therefore, is 2 

units long, and the short leg is 1 unit long.  The leg of bi-

section is, by Pythagorus’ theorem, the root of the differ-

ence of the squares of 2 and 1 ie √3.  As with the 45º trian-

gle, we will not only develop a series of triangles that ap-

proximate the 60º triangle more and more, but we will also 

develop a series of rational numbers that will have √3 as 

their limit. 

We can define the subset of triangles (B), where the even 

leg (e) is the bisected leg, and the uneven leg (u) the short 

leg, as follows: 

B={(i,j) | u = i2 + ij,  e = j2/2 + ij,  h2 = u2 + e2, 

and  |h - 2u| = 1, where (i + 1)/2 and j/2 ∈�} 

Let us call this series of triangles the e-series of √, since 

e represents the irrational leg in a system where the series 

are defined by their irrational legs.  To qualify for this sub-

set of triangles (B), a triangle must have its hypotenuse 

within 1 of two times the uneven leg.  Again, the 3/4/5-

triangle [(i,j) = (1,2)] qualifies to be an element of B, where 

|5 – 2(3)| = 1.  As before, for every series i, twice the un-

even leg (u) starts off greater than h, but the latter increases 

quadratically, versus arithmetically, and a cross-over point 

is reached, where the presence of a qualifying triangle is 

sought for.  The second series (i = 3) contains the second 

triangle:  33/56/65-triangle [(i,j) = (3,8)];  and the sixth 

series (i = 11) the third triangle:  451/780/901-triangle [(i,j) 

= (11,30)], etc.  The mathematical equation to define each 

member of this series is: 

For the series (i,j)n, (i,j)n+1 = (in+jn, 2in+3jn) (19) 

Table 2 contains the first eleven triangles in this series.  

Also included is √3, and the calculated approximation to 

√3 (e/u), offered by each respective triangle.  Again the 

ratio of j/i is included to show that it yields a series that 

also approximates a number that will have meaning later in 

this section. Take note that the decimal portion of j/i is 

equal to the decimal portion of √3.  The progressive under-

lined decimal part of each number shows to what extent it 

agrees with the decimal portion of √3. 

Table 2. The series of triangles (i,j)n that have as their limit the 60º triangle. 

 i j u e h 
e/u  (√,) 

1.7320508075688773 
j/i 

1 1 2 3 4 5 1.3333333333333333 2 
2 3 8 33 56 65 1.6969696969696970 2.666666666667 

3 11 30 451 780 901 1.7294900221729490 2.727272727273 

4 41 112 6273 10864 12545 1.7318667304320102 2.731707317073 
5 153 418 87363 151316 174725 1.7320375902842164 2.732026143791 

6 571 1560 1216801 2107560 2433601 1.7320498586046527 2.732049036778 

7 2131 5822 16947843 29354524 33895685 1.7320507394362811 2.732050680432 
8 7953 21728 236052993 408855776 472105985 1.7320508026771768 2.732050798441 

9 29681 81090 3287794051 5694626340 6575588101 1.7320508072176690 2.732050806914 

10 110771 302632 45793063713 79315912984 91586127425 1.7320508075436616 2.732050807522 

11 413403 1129438 637815097923 1104728155436 1275630195845 1.7320508075670668 2.732050807565 
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In this series of triangles, 2u is always 1 greater than h. 

As before the sides of the triangles (u,e,h)n+1 may be de-

fined in terms of in and jn, [(20), (22) and (24) respectively] 

and in terms of un, en and hn [(21), (23) and (25) respective-

ly].  The algebra leading up to the equations is not included: 

un+1 = 3�	
� 
 7�	�	 
 4�	

� (20) 

 = 4�	 
 4�	 � �	 (21) 

2en+1 = �2�	 
 3�	��4�	 
 5�	� (22) 

and en+1 = 8�	 
 7�	 � 4�	 (23) 

2hn+1 = 10�	
� 
 26�	�	 
 19�	

� (24) 

and hn+1 = 9�	 
 8�	 � 4�	 (25) 

Once again h may be solved in terms of h only, etc.  In 

this series there is no alternation, so the formulae are sim-

ple: 

hn+1 = 15hn – 15hn-1 + hn-2      (26) 

en+1 = 15en – 15en-1 + en-2   (27) 

and un+1 = 15un – 15un-1 + un-2  (28) 

Therefore the simple formula for a series of rational 

numbers that has √3 as its limit is the following: 

�'()
/'()

  where e1 = 4, e2 = 56, e3 = 780, 

en+1 = 15en – 15en-1 + en-2, 

and u1 = 3, u2 = 33, u3 = 451, 

un+1 = 15un – 15un-1 + un-2 

 

(29) 

In the beginning of this section we arbitrarily chose the 

even leg (e) to represent the √3-leg of the 60º triangle 

forming the e-series of √3 .  Now, let the even leg (e) 

represent the short leg, and the uneven leg (u) represent the 

bisected leg, defining the subset of triangles (C) as follows: 

C = {(i,j) | u = i2 + ij,  e = j2/2 + ij,  h2 = u2 + e2,   

and |h - 2e| = 1, where (i + 1)/2 and j/2 ∈�} 

This then is the u-series of √, where u represents the ir-

rational leg.  Here, the first qualifying triangle belongs to 

the second series (i = 3):  the 15/8/17-triangle [(i,j) = (3,2)], 

where |17 – 2(8)| = 1.  The second triangle belongs to the 

sixth series (i = 11):  209/120/241-triangle [(i,j) = (11,8)], 

etc.  The mathematical equation to define each member of 

this series is: 

For the series (i,j)n, (i,j)n+1 = (3in+jn, 2in+jn) (30) 

Table 3 contains the first ten triangles in this series.  As 

before, √3 is included, and the calculated approximation to 

√3 (u/e), offered by each respective triangle.  The ratio of 

j/i is also included again. 

Table 3. The alternate series of triangles (i,j)n that have as their limit the 60º triangle. 

n i j u e h 
u/e  (√,) 

1.7320508075688773 
j/i 

1 3 2 15 8 17 1.875 0.666666666667 

2 11 8 209 120 241 1.7416666666666667 0.727272727273 

3 41 30 2911 1680 3361 1.7327380952380952 0.731707317073 

4 153 112 40545 23408 46817 1.7321001367053999 0.732026143791 

5 571 418 564719 326040 652081 1.7320543491596123 0.732049036778 

6 2131 1560 7865521 4541160 9082321 1.7320510618432295 0.732050680432 

7 7953 5822 109552575 63250208 126500417 1.7320508258249522 0.732050798441 

8 29681 21728 1525870529 880961760 1761923521 1.7320508088796045 0.732050806914 

9 110771 81090 21252634831 12270214440 24540428881 1.7320508076629833 0.732050807522 

10 413403 302632 296011017105 170902040408 341804080817 1.7320508075756338 0.732050807565 

 

The product of the j/i ratios of the e-series and the u-

series is 2, viz. 2.732050807565 × 0.732050807565 = 2.  

An uncanny property of these two ratios is that the decimal 

portions of the two ratios are identical, and the integer por-

tion is 2 for the e-series, and 0 for the u-series.  Further-

more, these decimal portions are identical with that of √3, 

which has the intermediate, 1, as the integer portion of the 

number.  This phenomenon can be justified algebraically.  

If we break up the ratio of the e-series into its integer and 

decimal components, and set the decimal as an unknown, x, 

to solve where the product of the ratios must be equal to 2, 

we have the following: 

(2 + x)x=2 

∴ 2x + x
2
=2 

∴x
2
 + 2x– 2=0 

x = 
��0√�
�

�
 quadratic equation 

= -10√3 

= 0.7320508075688773 

(rejecting the negative root) 

Interestingly the product of the two ratios of the 45° is 

also 2, where the legs are the same length and the two se-

ries are intertwined ie √2 squared is 2. 
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Another interesting phenomenon shows up:  The devel-

oping decimal portions of the two series are also the same, 

out of phase by one position in the respective series (see 

Table 4).  This indicates that the respective quotients in the 

ratios must be the same, and that the numerator of the e-

series must be greater than that of the u-series by an inter-

val of two times the denominator [eg. e-series (3,8), u-

series (3,2)].  A further surprising phenomenon is that the j-

indices of both series are identical, and the i-indices also 

except that the u-series begins at 3, causing it to be out of 

phase with the i-indices of the e-series.  This all goes to 

show that the indices, even though they may be perceived 

to have been chosen arbitrarily [1], are meaningful and 

correct. 

Table 4.  A comparison of the indices and their ratios of the e- and u-series of √3 

e-series of √, u-series of√, 

i j j/i i j j/i 

1 2 2 3 2 0.666666666667 

3 8 2.666666666667 11 8 0.727272727273 

11 30 2.727272727273 41 30 0.731707317073 
41 112 2.731707317073 153 112 0.732026143791 

153 418 2.732026143791 571 418 0.732049036778 

571 1560 2.732049036778 2131 1560 0.732050680432 
2131 5822 2.732050680432 7953 5822 0.732050798441 

7953 21728 2.732050798441 29681 21728 0.732050806914 

29681 81090 2.732050806914 110771 81090 0.732050807522 
110771 302632 2.732050807522 413403 302632 0.732050807565 

413403 1129438 2.732050807565    

      

In the triangles of the u-series of √3, 2e is also always 1 

less than h. 

The sides of the triangles (u,e,h)n+1 may be defined in 

terms of in and jn, [(31), (33) and (35) respectively] and in 

terms of un, en and hn [(32), (34) and (36) respectively]: 

un+1= �3�	 
 �	��5�	 
 ���                         (31) 

= 8�	 � 4�	 
 7�	                  (32) 

2en+1= �8�	 
 3�	��2�	 
 �	�              (33) 

and en+1= 4�	 � �	 
 4�	                  (34) 

2hn+1= 34�	
� 
 26�	�	 
 5�	

�                 (35) 

and hn+1= 9�	 � 4�	 
 8�	            (36) 

h may be solved in terms of h only, etc: 

hn+1 = 15hn – 15hn-1 + hn-2  (26) 

en+1 = 15en – 15en-1 + en-2 (27) 

and un+1 = 15un – 15un-1 + un-2  (28) 

The general formulae for the three respective sides of the 

triangles are the same as for the e-series.  The simple for-

mulae are different, however, in that the members in the 

respective series differ.  The second series of rational num-

bers that has √3 as its limit is therefore the following: 
/'()
�'()

  whereu1 = 15, u2 = 209, u3 = 2911, 

un+1 = 15un – 15un-1 + un-2, 

ande1 = 8, e2 = 120, e3 = 1680, 

 en+1 = 15en – 15en-1 + en-2 

 

(37) 

4. Series that Have as Their Respective 

Limits the Roots of All the Uneven 

Numbers that are Not Perfect 

Squares 

We have shown that there are series of triangles that have 

as their limit the 45° triangle, and the 60° triangle.  These 

triangles also produce series of rational numbers that have 

as their limit √2 and √3, respectively.  Which other trian-

gles are there that have two rational sides and one irrational 

leg?  It turns out that the 60° triangle is the first in a series 

of irrational right-angled triangles where roots of all the 

uneven numbers form one leg, and the hypotenuses are 

consecutive numbers and the other leg, consecutive num-

bers that are one less than the hypotenuse in each triangle.  

Table 5 illustrates this with the first triangles of this infinite 

series. 

Table 5.  A series of triangles that represent the roots of all the uneven numbers. 

hypotenuse 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

rational leg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

irrational leg √3 √5 √7 3 √11 √13 √15 √17 √19 √21 √23 5 √27 √29 √31 √33 
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√9 and √25 are not irrational, and therefore are not a 

part of the argument, but they do form part of the picture in 

which the roots of all the uneven numbers are involved.  

The second triangle in this series forms the limiting triangle 

of a series of triangles, that will allow us to develop a series 

of rational numbers that have √5 as its limit.  Here too, 

there is an e-series and a u-series. 

The e-series of √1 is defined by a subset of triangles (D) 

as follows: 

D = {(i,j) | u = i2 + ij,  e = j2/2 + ij,  h2 = u2 + e2,  

 and |h - 3u/2| ≤ 1, where (i + 1)/2 and j/2 ∈�} 

The mathematical equation to define each member of 

this series is: 

For the series (i,j)n, (i,j)n+1 = (in+2jn, 2in+3jn) (38) 

Table 6 contains the first ten triangles in this series.  √5  
is included, and the calculated approximation to √5 (2e/u), 

offered by each respective triangle.  The difference between 

h and 3u/2 is provided, to reveal the eligibility of the trian-

gles for this series.  As with √2, the difference is alternat-

ing, this time in halves. 

Table 6.  The e-series of triangles (i,j)n that are used to define a rational series of numbers that have √5 as limit. 

n i j u e h 3u/2 Diff 
2e/u  (√1) 

2.2360679774997897 

1 1 2 3 4 5 4.5 -0.5 2.6666666666666667 

2 5 8 65 72 97 97.5 0.5 2.2153846153846154 

3 21 34 1155 1292 1733 1732.5 -0.5 2.2372294372294372 

4 89 144 20737 23184 31105 31105.5 0.5 2.2360032791628490 

5 377 610 372099 416020 558149 558148.5 -0.5 2.2360715831001965 

6 1597 2584 6677057 7465176 10015585 10015585.5 0.5 2.2360677765668318 

7 6765 10946 119814915 133957148 179722373 179722372.5 -0.5 2.2360679886974005 

8 28657 46368 2149991425 2403763488 3224987137 3224987137.5 0.5 2.2360679768757682 

9 121393 196418 38580030723 43133785636 57870046085 57870046084.5 -0.5 2.2360679775345652 

10 514229 832040 692290561601 774004377960 1038435842401 1038435842401.5 0.5 2.2360679774978517 

 

For the last triangle in the table, the ratio of j/i is deter-

mined to be 1.618033988748. 

The sides of the triangles (u,e,h)n+1 may be defined in 

terms of in and jn, [(39), (41) and (43) respectively] and in 

terms of un, en and hn [(40), (42) and (44) respectively]: 

un+1 = �3�	 
 5�	���	 
 2�	� (39) 

 = 12�	 
 8�	 � 9�	 (40) 

2en+1 = 8�	
� 
 26�	�	 
 21�	

� (41) 

and en+1 = 12�	 
 9�	 � 8�	 (42) 

2hn+1 = 10�	
� 
 32�	�	 
 35�	

� (43) 

and hn+1 = 17�	 
 12�	 � 12�	 (44) 

h may be solved in terms of h only, etc: 

hn+1 = 17hn + 17hn-1 – hn-2 (45) 

en+1 = 17en + 17en-1 – en-2 (46) 

and un+1 = 17un + 17un-1 – un-2 (47) 

The first series of rational numbers that has √5 as its 

limit is therefore the following: 
��'()
/'()

  where u1 = 3, u2 = 65, u3 = 1155, 

un+1 = 17un + 17un-1 – un-2, 

and e1 = 4, e2 = 72, e3 = 1292, 

en+1 = 17en + 17en-1 – en-2 

 

(48) 

The u-series of √1 is defined by a subset of triangles (E) 

as follows: 

E = {(i,j) | u = i2 + ij,  e = j2/2 + ij,  h2 = u2 + e2,  

 and  |h - 3e/2| ≤ 1, where (i + 1)/2 and j/2 ∈�} 

The mathematical equation to define each member of 

this series is: 

For the series (i,j)n, (i,j)n+1 = (3in + jn, 4in + jn) (49) 

Table 7 contains the first nineteen triangles in this series.  

The √5 is included, and the calculated approximation to √5 

(2u/e), offered by each respective triangle.  The difference 

between h and 3e/2 is provided, to reveal the eligibility of 

the triangles for this series.  The numbers (n) of the trian-

gles are designated na and nb, since the algebra that relates 

these triangles relates every second triangle.  The interval 

between the indices of na and nb, is equal to the interval 

between nb and (n+1)a, whereas the interval between the 
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indices in a series is always geometric.  Viewed differently:  

we thus have two interspersed series of triangles in one.  

This phenomenon becomes fairly general beyond √5.  The 

u-series of both √93 and √97 have thirty interspersed se-

ries, respectively.  As with √2  and the e-series of √5, this 

interspersed pair has the difference alternating in sign. 

For the last triangle in the table, the ratio of j/i is 

1.236067977496.  The product of the j/i ratios of the e-

series and the u-series is 2 again, viz. 1.618033988748 × 

1.236067977496 = 2.  This phenomenon is universal, and 

can be proven as follows: 

For an e-series and a u-series in root n, select triangles in 

the respective series that approximate the limiting triangle 

well, and are of similar size.  Let subscript e represent the 

e-series, and likewise for the u-series. 

Then he = hu,  ee = uu,  and ue = eu 

h = i
2
 + e,  and h = j

2
/2 + u 

By definition of i and j, ref [1] 

∴ he = hu = ��
� 
 �� 2  �/

� 2⁄ 
 �/ 

∴��
� 2  �/

� 2⁄                  Since ee = uu 

and ��√2 = ju 

Likewise �/√2 = je 

 

Table 7.  The u-series of triangles (i,j)n that are used to define a rational series of numbers that have √5 as limit. 

n i j u e h 3e/2 Diff 
2u/e  (√1) 

2.2360679774997897 

1a 1 2 3 4 5 6 -1 1.5 

1b 3 4 21 20 29 30 -1 2.1 

2a 5 6 55 48 73 72 1 2.2916666666666667 

2b 13 16 377 336 505 504 1 2.2440476190476190 

3a 21 26 987 884 1325 1326 -1 2.2330316742081448 

3b 55 68 6765 6052 9077 9078 -1 2.2356245869134171 

4a 89 110 17711 15840 23761 23760 1 2.2362373737373737 

4b 233 288 121393 108576 162865 162864 1 2.2360926908340701 

5a 377 466 317811 284260 426389 426390 -1 2.2360585379582073 

5b 987 1220 2178309 1948340 2922509 2922510 -1 2.2360666002853711 

6a 1597 1974 5702887 5100816 7651225 7651224 1 2.2360685035492360 

6b 4181 5168 39088169 34961520 52442281 52442280 1 2.2360680542493576 

7a 6765 8362 102334155 91530452 137295677 137295678 -1 2.2360679481840645 

7b 17711 21892 701408733 627359044 941038565 941038566 -1 2.2360679732226830 

8a 28657 35422 1836311903 1642447296 2463670945 2463670944 1 2.2360679791334991 

8b 75025 92736 12586269025 11257501248 16886251873 16886251872 1 2.2360679777381447 

9a 121393 150050 32951280099 29472520900 44208781349 44208781350 -1 2.2360679774087462 

9b 317811 392836 225851433717 202007663444 303011495165 303011495166 -1 2.2360679774865066 

10a 514229 635622 591286729879 528862928880 793294393321 793294393320 1 2.2360679775048634 

 

Therefore the product of the j/i-ratios of the respective 

series yields the following: 

je/ie × ju/iu = 
4546
7576

 

 
= 

76√�75√�
7576

 

 = 2 

The sides of the triangles (u,e,h)n+1 may be defined in 

terms of in and jn, [(50), (52) and (54) respectively] and in 

terms of un, en and hn [(51), (53) and (55) respectively]: 

un+1 = �3�	 
 �	��7�	 
 2�	� (50) 

 = 12�	 � 8�	 
 9�	  (51) 

2en+1 = �10�	 
 3�	��4�	 
 �	� (52) 

and en+1 = 12�	 � 9�	 
 8�	  (53) 

2hn+1 = 58�	
� 
 34�	�	 
 5�	

� (54) 

and hn+1 = 17�	 � 12�	 
 12�	 (55) 
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h may be solved in terms of h only, etc, and the general 

equation is identical to that of the e-series: 

hn+1 = 17hn + 17hn-1 – hn-2 (45) 

en+1 = 17en + 17en-1 – en-2 (46) 

and un+1 = 17un + 17un-1 – un-2 (47) 

The second and third series (interspersed series) of ra-

tional numbers that have √5 as their respective limits are 

therefore the following: 
�/'()
�'()

  where u1 = 3, u2 = 55, u3 = 987, 

un+1 = 17un + 17un-1 – un-2, 

and e1 = 4, e2 = 48, e3 = 884,  

en+1 = 17en + 17en-1 – en-2 (56) 

and  

�/'()
�'()

  where u1 = 21, u2 = 377, u3 = 6765, 

un+1 = 17un + 17un-1 – un-2, 

and e1 = 20, e2 = 336, e3 = 6052, 

en+1 = 17en + 17en-1 – en-2 

 

(57) 

An interesting phenomenon, but not unexpected, is the 

symmetry that there is between the e- and u-series with 

respect to (u,e,h)n+1 in terms of (u,e,h)n.  Table 8 illustrates 

this phenomenon. 

Table 8.  A comparison of (u,e,h)n+1 in terms of (u,e,h)n of the e- and u-series of √3 and √5. 

 e-series u-series 

  un+1 = 4hn + 4en – un     (21)  un+1 = 8hn – 4en + 7un     (32) 

√3  en+1 = 8hn + 7en – 4un     (23)  en+1 = 4hn – en + 4un     (34) 

  hn+1 = 9hn + 8en – 4un     (25)  hn+1 = 9hn – 4en + 8un     (36) 

  un+1 = 12hn + 8en – 9un     (40)  un+1 = 12hn – 8en + 9un     (51) 

√5  en+1 = 12hn + 9en – 8un     (42)  en+1 = 12hn – 9en + 8un     (53) 

  hn+1 = 17hn + 12en – 12un     (44)  hn+1 = 17hn – 12en + 12un     (55) 

 

In a similar way series of triangles and therefore rational 

numbers may be found which have the square roots of all 

the uneven numbers, that are not perfect squares, as limits, 

respectively.  In table 9 the indices of the first triangle in a 

series, and the formula for finding the indices for the fol-

lowing triangles in that series is provided for the next few 

series of triangles.  Since there are several interspersed sub-

series per series, the first triangle of each subseries is pro-

vided.  All subseries in one series have the same formula 

for finding the next triangle in that subseries. 

Table 9.  The means to finding the series of several subsets of triangles that follow those discussed. 

 e-series u-series 

√7 
(i,j)n+1 = (5in+9jn, 6in+11jn) (i,j)n+1 = (11in+3jn, 18in+5jn) 

(1,2);  (3,4);  (5,6) (1,2);  (5,8);  (11,18) 

√11 
(i,j)n+1 = (7in+15jn, 6in+13jn) (i,j)n+1 = (13in+3jn, 30in+7jn) 

(3,2);  (5,4);  (7,6) (1,2);  (7,16);  (13,30) 

√13 
(i,j)n+1 = (13in+30jn, 10in+23jn) (i,j)n+1 = (23in+5jn, 60in+13jn) 

(3,2);  (5,4);  (13,10) (1,2);  (43,112);  (3,8);  (7,18);  (13,34);  (23,60) 

√15 
(i,j)n+1 = (3in+7jn, 2in+5jn) (i,j)n+1 = (5in+jn, 14in+3jn) 

(3,2) (1,2);  (9,26);  (3,8);  (5,14) 

√17 
(i,j)n+1 = (3in+8jn, 2in+5jn) (i,j)n+1 = (5in+jn, 16in+3jn) 

(3,2) (1,2);  (1,4);  (3,10);  (5,16) 

√19 

(i,j)n+1 = (131in+351jn, 78in+209jn) (i,j)n+1 = (209in+39jn, 702in+131jn) 

(3,2);  (7,4);  (17,10);  (27,16);  (37,22);  (47,28);  (131,78);  

(393,234) 
(1,2);  (1,4);  (3,10);  (9,30);  (25,84);  (53,178);  (131,440);  (209,702) 

√21 
(i,j)n+1 = (43in+120jn, 24in+67jn) (i,j)n+1 = (67in+12jn, 240in+43jn) 

(3,2);  (7,4);  (11,6);  (25,14);  (43,24);  (129,72) (1,2);  (1,4);  (3,10);  (5,18);  (9,32);  (19,68);  (43,154);  (67,240) 

√23 
(i,j)n+1 = (19in+55jn, 10in+29jn) (i,j)n+1 = (29in+5jn, 110in+19jn) 

(3,2);  (7,4);  (11,6);  (15,8);  (19,10);  (57,30) (1,2);  (1,4);  (3,12);  (9,34);  (19,72);  (29,110) 

 

Several observations may be made when studying the ta-

ble above: 

At the u-series of √13 and √15 , the second subseries 

seems to be out of place since it has greater indices than all 
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the rest.  This is because the respective second subseries do 

not have a triangle in the first “cycle” of triangles, but starts 

in the second cycle.  If the formula is applied to all the oth-

er subseries, replacing the given indices, the second set of 

indices will fall into place.  Stated in another way:  the 

second subseries begins at what should have been the 

second triangle in the series. 

Another observation is that the i-index of one of the e-

subseries is identical to the i-index of one of the u-subseries 

throughout the respective series.  For example:  the fifth 

subseries of the e-series of √21 [(43,24), (4729,2640), 

(520147,290376), ….] has the same i-index as the seventh 

subseries of the u-series of √21 [(43,154), (4729,16942), 

(520147,1863466), ….]. 

Then, as the root increases, going down the table, there 

are triangles that may be matched, or correlated.  In the e-

series, starting from √11, all in the table have triangle (3,2) 

as first in the first subseries.  Triangle (5,4) occurs in both 

√11 and √13, etc. 

Studying the formulae for propagating the subseries, 

show interesting systematic correlations.  The in-coefficient 

of both i and j of every such formula in both the series of 

all the roots, correlate to a starting triangle of one of the 

subseries being described by the respective formulae.  For 

example:  in the e-series of √23 , the respective in-

coefficients of the formula is 19 and 10.  There is a starting 

triangle (19,10). 

Comparing the formulae of the e- and u-series of any 

root has the ii-coefficient of the e-series equal to the jj-

coefficient of the u-series, and the ji-coefficient of the e-

series equal to twice the ij-coefficient of the u-series.  A 

similar pattern exists for the remaining coefficients. 

Testing this technology on a primitive right-angled trian-

gle as limit instead of one with one irrational leg, such as 

the 3/4/5-triangle, reveals that the e-series does not have 

triangles that fall within 1 when applying the formula:  dif-

ference between 4e/3 and h.  The difference diverges.  The 

u-series produces a series of triangles where the difference 

between 4u/3 and h is 0, when the indices are multiples of 

(1,2), the indices of the 3/4/5-triangle.  Therefore there is 

no convergence, since the series of triangles is the repeti-

tion of the 3/4/5-triangle. 

A last observation with respect to this family of series of 

triangles is that when there are several subseries, and a ta-

ble is created with all the interspersed subseries in ascend-

ing order, from a little way down the list of triangles, each 

triangle that follows may be described as an exact combina-

tion of previous triangles.  Table 10 illustrates this using the 

u-series of √93 as an example.  As mentioned earlier in the 

paper, this series has 30 interspersed subseries, designated 

1a, …..1z, 1A, 1B, 1C, 1D.  Thereafter the second member 

of each subseries follows:  2a, 2b etc.  In the last column, 

the composition of the indices of that particular triangle is 

indicated by only the letter of triangles that occur closely 

above that triangle in the table.  Numbers have algebraic 

meaning such as 2f + a, for g.  This is true for 1g and 2g, 

etc.  It is interesting to note that the composition is always 

comprised of an uneven number of components.  This is 

because the i-indices are uneven, and to remain uneven, the 

number of components must be uneven. 

Table 10.  The u-series of √93 illustrates the composition of indices from previous triangles. 

n i j u e h 47e/46 Diff Comp 

1a 1 2 3 4 5 4.1 -0.91  

1b 1 4 5 12 13 12.3 -0.74  

1c 1 6 7 24 25 24.5 -0.48  

1d 1 8 9 40 41 40.9 -0.13  

1e 1 10 11 60 61 61.3 0.30  

1f 1 12 13 84 85 85.8 0.83  

1g 3 26 87 416 425 425.0 0.04 2f+a 

1h 5 44 245 1188 1213 1213.8 0.83 g+e+d 

1i 7 60 469 2220 2269 2268.3 -0.74 2g+d 

1j 9 78 783 3744 3825 3825.4 0.39 3g 

1k 13 112 1625 7728 7897 7896.0 -1 i+h+d 

1l 19 164 3477 16564 16925 16924.1 -0.91 2i+h 

1m 25 216 6025 28728 29353 29352.5 -0.48 2j+i 

1n 31 268 9269 44220 45181 45181.3 0.30 k+2j 

1o 59 510 33571 160140 163621 163621.3 0.30 n+l+j 

1p 87 752 72993 348176 355745 355745.0 0.04 2n+m 

1q 115 994 127535 608328 621553 621552.5 -0.48 o+n+m 

1r 261 2256 656937 3133584 3201705 3201705.4 0.39 3p 

1s 289 2498 805443 3841924 3925445 3925444.1 -0.91 q+2p 
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1t 463 4002 2067295 9860928 10075297 10075296.0 -1 r+q+p 

1u 637 5506 3913091 18665340 19071109 19071108.3 -0.74 2r+q 

1v 811 7010 6342831 30255160 30912881 30912880.9 -0.13 s+2r 

1w 985 8514 9356515 44630388 45600613 45600613.8 0.83 t+2r 

1x 1709 14772 28166029 134351340 137272021 137272021.3 0.30 v+u+r 

1y 3331 28792 107001713 510395784 521491345 521491344.5 -0.48 x+2v 

1z 4229 36554 172471307 822684324 840568765 840568765.8 0.83 2x+v 

1A 5851 50574 330142675 1574773212 1609007413 1609007412.3 -0.74 y+x+v 

1B 8371 72356 675765717 3223387444 3293461085 3293461084.1 -0.91 2y+x 

1C 10891 94138 1143870839 5456238480 5574852361 5574852360.0 -1 z+2y 

1D 13411 115920 1734458041 8273326320 8453181241 8453181240.0 -1 A+z+y 

2a 15931 137702 2447527323 11674650964 11928447725 11928447724.1 -0.91 2A+z 

2b 18451 159484 3283078685 15660212412 16000651813 16000651812.3 -0.74 B+A+z 

2c 20971 181266 4241112127 20230010664 20669793505 20669793504.5 -0.48 B+2z 

2d 23491 203048 5321627649 25384045720 25935872801 25935872800.9 -0.13 C+B+z 

2e 26011 224830 6524625251 31122317580 31798889701 31798889701.3 0.30 2C+z 

2f 28531 246612 7850104933 37444826244 38258844205 38258844205.8 0.83 D+C+z 

2g 72993 630926 51381159567 245086990256 250414968305 250414968305.0 0.04 2f+a 

2h 122495 1058804 144703221005 690231151188 705236176213 705236176213.8 0.83 g+e+d 

2i 169477 1464900 276989310829 1321232862300 1349955315829 1349955315828.3 -0.74 2g+d 

2j 218979 1892778 462430436103 2205782912304 2253734714745 2253734714745.4 0.39 3g 

2k 315463 2726752 959706270545 4577777600928 4677294505297 4677294505296.0 -1 i+h+d 

2l 461449 3988604 2053472506797 9795018261604 10007953441205 10007953441204.1 -0.91 2i+h 

2m 607435 5250456 3558288019585 16972954844328 17341932123553 17341932123552.5 -0.48 2j+i 

2n 753421 6512308 5474152808909 26111587349100 26679230552341 26679230552341.3 0.30 k+2j 

2o 1433849 12393690 19826602967611 94572455920860 96628378875661 96628378875661.3 0.30 n+l+j 

2p 2114277 18275072 43108731635673 205627692705536 210097859938265 210097859938265.0 0.04 2n+m 

2q 2794705 24156454 75320538813095 359277297703128 367087673740153 367087673740152.0 -0.48 o+n+m 

         

5. Other Families of Series of Triangles 

That Have Even and Uneven Roots 

The family of series of triangles are not just limited to all 

the uneven roots created by a family where the hypotenuse 

and the rational leg differ by 1. Another family exists where 

the hypotenuse and the rational leg differ by 2, and then 

one with a difference of 3 etc. Table 11 shows the family 

where the hypotenuse and the rational leg differ by two. 

Every second member of the family, though, has all three 

the sides as multiples of two, and are thus identical to a 

triangle in the previous family, once having extracted 2 

from all the sides. The triangles that offer new limits to a 

series of triangles, are those that have an uneven hypote-

nuse and rational leg.  The irrational leg is a root of an even 

number, which is new, since the previous family had only 

roots of uneven numbers as limits. Not all even numbers 

are covered in this way, but every eighth number, beginning 

with √8, is new. When we get to √16, we have a perfect 

square, and this triangle (3/4/5) is of no use as a limit to a 

series of triangles. 

Table 11.  A series of triangles that have the hypotenuse 2 greater than the rational leg. 

hypotenuse 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

rational leg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

irrational leg √8 √12 4 √20 √24 √28 √32 6 √40 √44 √48 √52 √56 √60 8 √68 

                 

Something else that needs to be mentioned, is that at 

times the arbitrary limit of 1, set for qualifying a triangle 

into a series, is too small, excluding all possible triangles. If 

the limit is then raised to 5 or 10, series of triangles may be 

found.  An example is the e-series of triangle 1/√8/3. Three 

interspersed subseries are generated with a difference be-

tween 3u and h, of 4, 2 and -4. 

There is another family of triangles that will complete 

the picture, and they are those where the hypotenuse is the 

irrational number. The 1/1/√2, where we started this paper, 

is such a triangle. Table 12 shows the family of triangles, 

which act as limits to series, where the two rational legs 
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differ by 1.  These families differ from the previous, in that 

the difference between the numbers being square-rooted is 

not arithmetic, but geometric. 

Table 12.  A series of triangles where the hypotenuse is irrational, and the legs differ by 1. 

hypotenuse √5 √13 5 √41 √61 √85 √113 √145 √181 √221 √265 √313 √365 √421 

rational leg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

rational leg 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

               

Other series exist here too where the two rational legs 

differ by 2, 3 etc. These offer alternate series to a root, 

compared to those we have dealt with already, where all the 

uneven numbers are accounted for. Some roots have several 

solutions. For example√65 has eight different series, four 

pairs (e- and u-series of): √65/32/33;  √65/4/9; 7/4/√65 

and 1/8/√65. 

Table 13 shows all the roots under √100, that serve as a 

limit to a series of triangles and thus rational numbers in 

this way. Each number has a pair of series excepting √2. 

Where more than one pair is present, the number of pairs 

are indicated in parentheses. In total there are therefore 

107½ pairs of series. The number of subseries may also be 

counted, but they are dependent on what the limit of the 

difference is set to. The limit is 1 most of the time, but at 

times 5 or 10. 

Table 13.  The number of pairs of series that have limits of less than √100. 

2 (½) 13 (2) 26 35 (2) 47 57 (2) 69 (2) 79 89 (2) 

3 15 (2) 27 37 (2) 48 (2) 58 (2) 71 80 (2) 91 (2) 

5 (2) 17 (2) 29 (2) 39 (2) 50 59 (2) 72 (2) 82 93 (2) 

7 19 31 40 (2) 51 (2) 61 (2) 73 (2) 83 95 (2) 

8 21 (2) 32 41 (2) 53 (2) 63 (2) 74 85 (4) 96 (2) 

10 23 33 (2) 43 55 (2) 65 (4) 75 (2) 87 (2) 97 (2) 

11 24 (2) 34 45 (2) 56 (2) 67 77 (2) 88 (2) 99 (2) 

6. Conclusion 

The infinite two dimensional array of Pythagorean triples, 

developed in the previous paper [1], offers a system of sub-

sets of triangles that approximate right-angled triangles 

with one side that is irrational.  These subsets may be or-

dered into series, that better and better approximate the 

limiting triangle with one irrational side.  Ratios of the 

sides of these series, produce series of rational numbers 

that approach an irrational limit.  The way to find these 

series has been shown, and many other interesting asides 

with respect to these series of triangles, and thus rational 

numbers. 
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