
 

Applied and Computational Mathematics 
2013; 2(3): 78-85 

Published online June 30, 2013 (http://www.sciencepublishinggroup.com/j/acm) 

doi: 10.11648/j.acm.20130203.12  

 

 

Exact and explicit approximate solutions to the  
multi-order fractional Burgers-Poisson and fractional 
Burgers-Poisson equations 

Joshua Ikechukwu Nwamba  

Department of Mathematics, University of Nigeria, Nsukka, 410001, Nigeria 

Email address: 
jnwam2day@yahoo.com 

To cite this article: 
Joshua Ikechukwu Nwamba. Exact and Explicit Approximate Solutions to the Multi-Order Fractional Burgers-Poisson and Fractional 

Burgers-Poisson Equations. Applied and Computational Mathematics. Vol. 2, No. 3, 2013, pp. 78-85. doi: 10.11648/j.acm.20130203.12 

 

Abstract: The multi-order fractional Burgers-Poisson (MFBP) equation was introduced, exact as well as approximate solutions to the 

introduced MFBP, fractional Burgers-Poisson (fBP) and Burgers-Poisson (BP) equations were obtained through the use of the homotopy 

perturbation method (HPM) and the Adomian decomposition method (ADM)  in this paper. The effectiveness and efficiency of the 

approximate techniques in handling strongly nonlinear multi-order fractional as well as fractional partial differential equations was 

established in this paper. It was also shown in this paper that the two approximate techniques employed gave similar results to the 

considered model equations. 
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1. Introduction 

It was observed in [1] that (2) properly describe the 

unidirectional propagation of long waves in dispersive 

media. For unidirectional water waves exhibiting weaker 

dispersive effects, the BP equation (a shallow water 

equation) turned out to be a better model equation 

compared to the Korteg-de-Vires (KDV) equation. Due to 

this, its importance in the area of mathematical physics and 

continuum mechanics cannot be overemphasized.  

Notable among the interesting behaviors exhibited by the 

BP equation were, local existence results for smooth 

solutions, global existence result for weak entropy 

solutions and wave breaking in finite time [1]. The classical 

Lie method was employed in constructing group invariant 

solutions to (2) in [2], while [3] used the variational 

iteration method to obtain an accurate approximate solution 

to the BP equation. Employing Pade (2,2) approximation, 

[4] proposed that the BP equation gives the phase velocity 

which arises in linear water wave theory. In [5], large time 

behavior of global solutions to (2) was considered.  

Where ( ),u x t  denotes the velocity of a given gas 

and ( ),x tϕ , the radiative heat-flux, the system (2) with the 

initial condition ( ) ( )0,0u x u x=  can be used to describe 

the behavior of a high temperature gas [6, 7].  

The multi-order fractional Burgers-Poisson equation can 

be represented as, 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

, , , 1 ,

3 , , , ,

0 , 1,1 2,2 3, 0

t t x x

x x x

D u x t D D u x t D u x t u x t

D u x t D u x t u x t D u x t

t

α α β α

α β δ

α α β δ

′

′

− + +

= +
′< ≤ < ≤ < ≤ >

       (1) 

The classical Burgers-Poisson (BP) equation is given as  

0,

0

t x x

xx

u uu

u

ϕ
ϕ ϕ
+ + =

− + + =
                                   (2) 

We may multiply both sides of (2a) with ( )21 x− ∂  and 

employing (2b) on the resulting right hand side (r.h.s), we 

obtain,  

3 0t xxt x x x xx xxxu u u uu u u uu− + + − − =                   (3) 
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Furthermore, where 1,0 ,
x

x tϕ < < < ∞  in (2), we may 

neglect 
xx

ϕ  to formally obtain  

0
t x x

u uu

u

ϕ
ϕ

+ + =
= −

                              (4) 

The resulting implication of the above condition is that 
xx

u  

may be neglected in (3) to also obtain (4) since 
x

u  is very 

small. 

Also, the fractional BP equation is represented as  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

, , , 1 ,

3 , , , ,

0 1, 0

t t x x

x xx xxx

D u x t D u x t u x t u x t

u x t u x t u x t u x t

t

α α

α

− + +

= +
< ≤ >

        (5) 

where ( ) ( ) and  depend on , 0, ,u t x Rϕ ∈ ∞ × and subscripts 

denote partial derivatives,  , ,α α β′  and δ  denotes the 

fractional time and space derivatives in the Caputo’s sense. 

The function ( ),u x t  becomes zero for all , 0x t <  as 

,x t → −∞ .  

In the case where 3, 2 and , 1δ β α α ′= = = , the multi-

order fractional equation (1) reduces to the classical 

Burger’s-Poisson (BP) equation given by (2). Furthermore, 

in the case 3, 2 and 1δ β α ′= = = , we obtain the fractional 

BP equation given by (5) and treated in [8]. 

In this paper, the homotpy perturbation method (HPM) 

[9-13] and Adomian decomposition method (ADM) [14-18] 

will be employed to obtain both exact and approximate 

explicit solutions of the multi-order fractional Burger’s-

Poisson (MFBP) equation and the time-fractional Burgers-

Poisson (fBP) equation. 

2. Essential Preliminaries  

2.1. Fractional Calculus  

In recent times, it is obvious that the development and 

application of fractional calculus in many fields has yielded 

substantial results. As a result, areas where fractional 

calculus has been applied spans, acoustics, electromagnetic, 

electrochemistry, viscoelasticity, material science, to 

mention only but a few. The importance of fractional 

calculus stems from the fact that, for physical phenomena 

depending not only on the present time but the past time 

history, it has proved effective and efficient.(see [8,19]) 

Moreover, multi-order fractional differential equations play 

huge roles in the fields mentioned above, popular ones 

include, the Bagley-Torvick equation [20-22] and the 

Basset equation [22,23]. Very few literatures (see [22, 24]) 

exist where efforts have been made to solve multi-order 

fractional differential equations, yet a thorough and 

comprehensive analysis has not surfaced.   

First, we define the concept of fractional-order 

integration and fractional-order differentiation [25]. In 

defining the concept of fractional derivative we will adopt 

Caputo’s definition whose advantage over the Riemann-

Liouville definition lies in its ability to handle Initial Value 

Problems (IVPs) properly.  

Definition 2.10: A real function ( )f t  is said to be in the 

space ,S Rµ µ ∈  , if there exists a real number n µ>  , such 

that ( ) ( )1

p
t f t f t

− = , where ( ) ( )1 0,f t S∈ ∞  and it is said 

to be in the space 
pS  if and only if ,

p
f S p Nµ∈ ∈ .  

Definition 2.11: The Riemann-Liouville fractional 

integral operator of order α , Iα  of a function 

, 1f Sµ µ∈ ≥ −  is defined as  

( ) ( ) ( ) ( )1

0

1
, 0, 0

t

I f t t f d t
αα τ τ τ α

α
−= − > >

Γ ∫             (6) 

Definition 2.12: The fractional derivative in Caputo’s 

sense is defined as  

( ) ( ) ( ) ( ) ( )1

0

1
t

m m
D f t t f d

m

αα τ τ τ
α

− −= −
Γ − ∫             (7) 

where α  is the order of operation, m  satisfies the 

relation
11 , , 0, mm m m N t f Sα −− < ≤ ∈ > ∈ .  

Definition 2.13: The Caputo time-fractional derivative 

operator of order 0α >  will be defined as  

( ) ( )
( ) ( )

( )

1

0

,1
,   1 0

,
,

,   

mt
m

m

m

m

u x
t d if m m

m
D u x t

u x t
if m N

t

α

α

τ
τ τ α

α τ

α

− − ∂
− − < > ≤Γ − ∂= 

∂
= ∈ ∂

∫   (8) 

if m  were to be the smallest integer that exceeds α .  

Lemma 2.1: In the case where 1 0 ,m m m Nα− < > ≤ ∈  

and , 1,f Sµ µ∈ ≥ −  then  

( ) ( ) ( )
1

0

0
!

km

k

t
I D f t f t f

k

α α
−

+

=

= −∑                       (9) 

We may set , 1n nα α= ≥  in (6) and (7) to obtain the useful 

relations  

( ) ( ) ( ) ( )1

0

1
, 0, 0

t
nn

I f t t f d t n
n

αα τ τ τ α
α

−= − > >
Γ ∫         (10) 

( ) ( ) ( ) ( ) ( )1

0

1
t

m n m
D f t t f d

m n

αα τ τ τ
α

− −= −
Γ − ∫      (11) 

Furthermore, (10) and (11) can be respectively  rewritten 

for 
( ) kf t t=

as  

( )
( )

1

1

k n

n k
k t

I t
k n

α
α

α

+Γ +
=

Γ + +
                              (12) 
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( )
( )

1

1

k n

n k
k t

D t
k n

α
α

α

−Γ +
=

Γ − +
                              (13) 

For comprehensive and heuristic study, see[25-30].  

2.2. Homotopy Perturbation Method (HPM) 

This powerful semi-analytic method of obtaining 

approximate solutions to varying Differential equations 

(D.E’s) was first proposed by Him in [9]. Over the years, it 

has been reviewed and improved to increase the 

convergence rate and accommodate modern challenges 

[10-13].  

Consider the following general nonlinear differential 

equation of the form  

( ) ( ) 0,A u f r r− = ∈Ω                               (14) 

with the corresponding boundary conditions  

, 0,
u

B u r
n

∂  = ∈ Γ ∂ 
                                (15) 

where A  is a general differential operator, B  is the 

boundary operator, ( )f r  is a known analytic function and 

Γ  is the boundary of the domain Ω .  

The operator A  can be generally divided into linear ( )L  

and nonlinear ( )N  parts. Then, we may write (14) as 

follows:  

( ) ( ) ( ) 0L u N u f r+ − =                                  (16) 

Employing the Homotopy technique, we construct a 

homotopy ( ) [ ], : 0,1U r p RΩ× → , which satisfies  

( ) ( ) ( ) ( )
( ) ( ) [ ]

0, 1

0, 0,1 ,

H U p p L U L U

p A U f r p r

= − −  

+ − = ∈ ∈ Ω  
                (17) 

or  

( ) ( ) ( ) ( )
( ) ( )

0 0,

0

H U p L U L U pL U

p N U f r

= − +

+ − =  
                  (18) 

where [ ]0,1p ∈ , is an embedding parameter, 
0

U  is an 

initial approximation for the solution of (14) which must 

satisfy the given boundary conditions in (15). Obviously, 

from (17) and (18) we have  

( ) ( ) ( )0,0 0H U L U L U= − =                       (19) 

( ) ( ) ( ),1 0H U A U f r= − =                         (20) 

The fact that as 
p

 changes from zero to unity, ( ),U r p  

varies from 
0

U  to u  is termed homotopy (continuous 

deformation)  in topology. On the account of the HPM, we 

can assume that the solution of (17) and (18) can be written 

as a power series in p :  

2

0 1 2 ...U U pU p U= + + +                                  (21) 

Then, letting 1p = , we obtain the solution of (14)  

0 1 2
1

lim ...
p

u U U U U
→

= = + + +                            (22) 

It has been proved that the series (22) converges [11].  

2.3. Adomian Decomposition Method (ADM)  

This method first proposed by G. Adomian [14], has 

proved efficient and effective in handling nonlinear D.E 

problems of Engineering, Applied Mathematics and 

Physics. (see [15-19]) 

Consider again (14) in the form of (16) for 0 1t≤ ≤  

where 
n

n

d
L

dt
=  is the n order− derivative operator. We 

assume that the inverse linear operator 1L− exists and can be 

conveniently taken as the definite integral for a function in 

the following form  

( ) ( )
11

1

1 1

0 0 0 0

. ... . ...
n nt ttx

n nL dt dt dt
−

−
−= ∫ ∫ ∫ ∫                        (23) 

Applying the inverse operator to both sides of (16) yields  

( ) ( )1 1 1L L u L f L N u− − −= −                          (24) 

Thus, we have  

( ) ( ) ( )
1

1 1

0

0
!

kn
k

k

t
u t u L N u L f

k

−
− −

=

= − +∑               (25) 

Assume for 0 1k n≤ ≤ − , 

( )
0

0

1
0 , 1

!

k
k n

k nk
n

d
A u N u n

k d
λ

λ
λ

∞

= =

  = = ≥  
  
∑          (26) 

Equation (26) gives the so called Adomian polynomials . 

Then according to the ADM, the solution of (16) is given 

as  

( ) ( )
0

n

k

u t u t
∞

=

=∑                                   (27) 

with 
( ) ( )0 0u t u=

.  

3. Application of HPM  

Consider (1) with the initial conditions  
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( ),0u x x=                                         (28) 

The exact solution of the BP equation, a special case of 

MFBP when 1, 2, 3α α β δ′= = = = , is given by classical 

Lie method (see [2]) as  

( ) 1
, 1

1

x
u x t

t

+= −
+

                               (29) 

According to the HPM, the homotopy is constructed as 

follows:  

( ) ( ) ( )1 1 3 0
t t t x x x x x

p D U p D U D D U D U U D UD U UD Uα α α β α α β δ′ ′ − + − + − + = +
(30) 

or  

( ) ( )1 3 0t t x x x x xD U p D D U D U U D UD U UD Uα α β α α β δ′ ′ + − + − + = +  (31) 

where 
[ ]0,1p ∈

 is an embedding parameter. By utilizing 

the parameter
p

, the solution 
( ),u x t

 can be expanded in 

the following form  

( ) ( ) ( ) ( ) ( )2 3

0 1 2 3, , , , , ...u x t U x t pU x t p U x t p U x t= + + + +           

(32) 

Setting 1p =  gives the approximate solution  

( ) ( ) ( ) ( ) ( )0 1 2 3, , , , , ...u x t U x t U x t U x t U x t= + + + +    (33) 

Now substituting (32) into (31) and equating the terms with 

the identical powers of p  gives  

( )0

0 0
: 0,    ,0 ;

t
p D U U x xα = =  

(34) 

( )1

1 0 0 0
: 1

t t x x
p D U D D U D U Uα α β α ′− + +  

( )0 0 0 0 1
3 0,   , 0 0;

x x x
D U D U U D U U xα β δ′− − = =  

( )2

2 1 1 0
: 1

t t x x
p D U D D U D U U

α α β α ′− + +  

1 0 0 1 1 03( )x x x x xU D U D U D U D U D Uα α β α β′ ′ ′+ − +  

( )0 1 1 0 2
( ) 0,   ,0 0

x x
U D U U D U U x

δ δ− + = =  

3

3 2 2: t t x xp D U D D U D Uα α β α ′− +  

0 2 1 1 2 0( )x x xU D U U D U U D Uα α α′ ′ ′+ + +  

0 2 1 1 2 03( )x x x x x xD U D U D U D U D U D Uα β α β α β′ ′ ′− + +  

0 2 1 1 2 0( ) 0,  x x xU D U U D U U D Uδ δ δ− + + =  

( )3
 ,0 0U x =  

1 1:n

t n t x n x np D U D D U D Uα α β α ′
− −= −  

1 1

1 1

0 0

3
n n

m x n m x m x n m

m m

U D U D U D Uα α β
− −

′ ′
− − − −

= =

− +∑ ∑  

( )
1

1

0

,   ,0 0, 1
n

m x n m n

m

U D U U x nδ
−

− −
=

+ = ≥∑  

Applying the operator (10) to (34) and utilizing lemma 2.1, 

(12) and (13), we obtain the approximate solution to the 

MFBP equation given as  
1 1 1

1 1 1 1 1

0 0 0

3
n n n

n t t x n x n m x n m x m x n m m x n m

m m m

U I D D U D U U D U D U D U U D Uα α β α α α β δ
− − −

′ ′ ′
− − − − − − − −

= = =

 = − − + + 
 

∑ ∑ ∑
(35) 

Thus,  

( )0
,U x t x=

                                  (36) 

( ) ( )
( ) ( )

1

1

1
,

1 2

x x
U x t t

α
α

α α

′− +
= −

′Γ + Γ −
                      (37) 

( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 2
2

2

1
,

1 2 3 1 2 2

x x
U x t t t

α β α
α αα α

α α β α α

′− − ′−′ ′−
= +

′ ′Γ + Γ − Γ − Γ + Γ −

 

(38) 

( )
( )

( )
( )

( )
( )

( )
( )

2
2 2 3 3

2 2 2 2 3 2 3 2

x
x

α α α α
α α α α

 ′ ′ ′ ′ Γ − Γ − Γ − Γ −
+ + +   ′ ′ ′ ′Γ − Γ − Γ − Γ −   

 

( )
( ) ( )

( )
( ) ( ) ( )

2 2 2 2

2 2

2

1 3 1

1 2 2 31 2 2

x x x
t t

α α β
α αα α

α α βα α

′ ′− − −′ ′+ −
+ +

′Γ + Γ − Γ −′Γ + Γ −

 

( )( )
( ) ( ) ( )

2

2
1 1

1 2 2 4

x
t

α δ
αα α α

α α β

′− −′ ′ ′− +
−

′Γ + Γ − Γ −
 

where the first four approximations of (33) are sufficient, 

then the approximate explicit solution of (1) with the initial 

condition (28) will be expressed as the combination of 

(36)-(39).  

Table 1. 

       t          Exact        HPM&ADM       Error      Percentage Error 

  0.0000     2.0000          2.0000               0.0000             0.0000 

  0.2000     1.4000          1.3994               0.0006             0.4280 

  0.4000     1.0000          0.9688               0.0312             3.1200 

  0.6000     0.7143          0.4092               0.3051             42.710 

  0.8000     0.5000         -1.0000               1.5000             300.00 

Table 2. 

       t          Exact        HPM&ADM       Error      Percentage Error 

  0.0000    -0.1667         -0.1680               0.0013            -0.7798 

  0.5000     0.2963          0.2942               0.0021             0.7087 

  1.0000     0.7593          0.7564               0.0029             0.3819 

  1.5000     1.2222          1.2187               0.0035             0.2864 

  2.0000     1.6852          1.6809               0.0043             0.2552           

  2.5000     2.1481          2.1431               0.0050             0.2328 
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  3.0000     2.6111          2.6053               0.0058             0.2221        

  3.5000     3.0741          3.0676               0.0065             0.2114          

  4.0000     3.5370          3.5300               0.0070             0.1979          

  4.5000     4.0000          3.9920               0.0080             0.2000 
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   − − + − +
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 
 
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  

(39) 

4. Application of ADM  

In the light of the ADM, we may rewrite (1) as  

( )1 3t t x x x x xL u D D u D u u D uD u uD uα α β α α β δ′ ′= − + + +       (40) 

where, 

( ) ( )
( ) ( )

0

.1
.

1

t

tL t d
t

αα τ τ
α

−∂
= −

Γ − ∂∫
           (41) 

is an easily invertible operator in the Caputo’s sense. 

According to the ADM, (40) can be written as  

( ) ( ) ( )
0

, 0 1 3t t t x x x x xt
u x t u L u L D D u D u u D uD u uD uα α α β α α β δ′ ′−

=
 = + + − + + + 

      (42) 

with  

( ) ( ) ( )( ) 1

0

1
. .

t

tL t d
αα τ τ

α
−− = −

Γ ∫                   (43) 

Applying the given initial condition (28), (42) becomes  

( ) ( ), 1 3t t x x x x xu x t x L D D u D u u D uD u uD uα α β α α β δ′ ′−  = + − + + + 
     (44) 

In view of the ADM, the solution is expressed in a series 

form given by  
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( ) ( )
0

, ,
n

n

u x t u x t
∞

=

=∑                                  (45) 

Substituting (45) into (44), the resulting recurrence relation 

is established for 0n ≥ :  

( )1 1 3n t t x x x x xu L D D u D u u D uD u uD u
α α β α α β δ′ ′−

+  = − + + +        (46) 

where,  

( )0 ,u x t x=                                        (47) 

Then for 0,1, 2n = , we also obtain (36)-(39) respectively.  

 

Fig 1. Behavior of ( ),u x t  for varying t , when 2x =  

 

Fig 2. Behavior of ( ),u x t  for varying x , when 0.2t = .  

Table 3. 

       t          Exact        HPM&ADM       Error      Percentage Error 

  0.0000     5.0000          5.0000               0.0000             0.0000 

  0.1000     4.4000          4.4000               0.0000             0.0000 

  0.2000     3.9090          3.9090               0.0000             0.0000 

  0.3000     3.5000          3.5000               0.0000             0.0000 

  0.4000     3.1538          3.1218               0.0312             0.9900           

  0.5000     2.8571          2.7440               0.1131             3.9600 

  0.6000     2.6000          2.2840               0.3160             12.154        

  0.7000     2.3750          1.6279               0.7471             31.453          

  0.8000     2.1765          0.6096               1.5669             71.992          

  0.9000     2.0000         -1.0000               3.0000             150.00 

5. Discussion and Results  

First, we observe that though the procedure of obtaining 

approximate solutions using the HPM and ADM differs, 

the results obtained are exactly the same. 

Now, setting 3, 2 and 1δ β α ′= = = , in (1), it was 

mentioned above that the explicit analytical approximate 

solution to the resulting fBP  has been obtained. Setting 

3, 2 and 1δ β α ′= = = , in (36)-(39), we obtain similar 

result reported in (18) of [8] and expressed as  

( ) ( )
( )

( )
( ) ( ) ( )

( ) ( )

2

2

3

2

2 11
,

1 1 2

1 4 1 1 2

1 3 1

xx
u x t x t t

x
t

α α

α

α α

α α

α α

++= − +
Γ + Γ +

 + Γ + + Γ +
 −
Γ + Γ +

              (48) 

 

Fig 3. Behavior of ( ),u x t  for varying t , when 5x = . 

Thus, the exact solution to BP equation is obtained when 

1α =  in (48) as  

( )0 ,u x t x=                                            (49) 

( ) ( )1 , 1u x t x t= − +                                       (50) 

( ) ( ) 2

2 , 1u x t x t= +                                      (51) 

( ) ( ) 3

3 , 1u x t x t= − +                                   (52) 

Then in view of (35) and (46), nu  satisfies  

( ) ( ) ( ), 1 1
n n

nu x t x t= − +                             (53) 

In other words, the exact solution is given as  

( ) ( )
0

1
, lim , 1

1

j

n
j

n

x
u x t u x t

t→∞ =

+= = −
+∑                  (54) 

which is just the same as that obtained employing 

Variational iteration method (VIM) [3] and the classical 

Lie method [2].  
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Fig 4. Error difference of the exact solution and the HPM for 5x =  as t 

varies. 

Now, setting 1, 2xα = = in (48) and (54), we obtain 

respectively  
( ) ( )2

3
2 , 2 3 . . .u t t t t= − − + −

                  (55)  
( ) 3

2 , 1
1

u t
t

= −
+                                                     (56)  

Likewise, we may set 1, 0.2tα = =  

to respectively obtain for (48) and (54),  
( ) ( ) ( ) ( )2 3, 0 . 2 1 0 . 2 1 0 . 2 1 0 . 2 . . .u x x x x x= − + + + − + +  

                                                                                        (57)  
( ) 1

, 0 . 2 1
1 . 2

x
u x

+= −                                                  (58) 

Furthermore,  setting 1, 5xα = = in (48) and (54), we 

obtain respectively  
( ) ( )2

3
5 , 5 6 . . .u t t t t= − − + −

                  (59)  

 
( ) 5

5 , 1
1

u t
t

= −
+                                                      (60)  

 

Figure I presents (55) for 1α = and (56), where 2,x t=  

varies, figure II presents (57) for 1α = and (58), where 

0.2,t x=  varies, figure III presents (59) for 1α = and (60), 

where 5,x t=  varies and figures IV and V presents the 

error difference between the exact solution and the solution 

obtained by HPM for 5x =  and 2x =  respectively as t 

varies.  

Tables 1,2 and 3, show the numerical values of the error 

between the exact result and the fourth-order approximate 

solution obtained from the HPM/ADM. We can observe the 

accuracy met for small values of the varying parameter, but 

as these values increase, inaccuracy takes the same toll. 

This can be attributed to the few components of our 

approximate solution in both cases.  

 

Fig IV. Error difference of the exact solution and the HPM for 2x =  as t 

varies.  

On the other hand, we can observe from figures IV and 

V that the approximate techniques employed in this study 

agree excellently with the given exact result until at such 

time when there is need to add more terms to the 

approximate solution, since we used a four-term 

approximation in our study. Though, one must note that 

more terms are required for the solutions obtained through 

the given approximate techniques in order to keep the error 

to the barest minimum as time increases, it is imperative to 

say that the approximate techniques employed proved 

effective and efficient.  

6. Conclusion  

Through the use of two approximate techniques viz 

HPM and ADM, exact and explicit approximate solutions 

to the MFBP, fBP and BP equations were obtained in this 

paper. It was found out in this paper that the employed 

approximate techniques give similar results that agree 

excellently with the known exact result obtained through 

the VIM, classical Lie method and analytical methods. 

Attempts were made at presenting the error difference 

between the exact result and the obtained approximate 

solutions, results indicate accuracy, effectiveness and 

efficiency on the part of the employed approximate 

techniques. This work represents a progressive step 

towards developing a complete analysis and gaining full 

understanding of the effect of approximate techniques to 

realistic physical models especially those modeled by 

multi-order fractional differential equations. Future works 

can extend their scope towards the effect of these 

approximate techniques on model equations such as the one 

treated in this paper with external forcing as well as time 

delay.   
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