

Applied and Computational Mathematics
2014; 3(1): 9-14

Published online February 20, 2014 (http://www.sciencepublishinggroup.com/j/acm)

doi: 10.11648/j.acm.20140301.12

Numerical solution of linear Volterra integro-differential
equation using Runge-Kutta-Fehlberg method

Ali Filiz

Department of Mathematics, Adnan Menderes University, 09010 AYDIN-TURKEY

Email address:
afiliz@adu.edu.tr

To cite this article:
Ali Filiz. Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method. Applied and

Computational Mathematics. Vol. 3, No. 1, 2014, pp. 9-14. doi: 10.11648/j.acm.20140301.12

Abstract: In this paper a new fourth and fifth-order numerical solution of linear Volterra integro-differential equation is

discussed. One popular technique that uses here for error control is called the Runge-Kutta-Fehlberg method for Ordinary

Differential Equation (ODE) part and Newton-Cotes formulae for integral parts.

Keywords: A fourth and Fifth-Order Accuracy, Lagrange Polynomial Interpolating, Newton-Cotes Formulas,

Runge-Kutta Methods, Linear Volterra Integro-Differential Equation

1. Introduction

Mathematical modeling of real-life problems usually

results in functional equations, like ordinary or partial

differential equations, and integral and integro-differential

equations. Many mathematical formulations of physical

phenomena contain integro-differential equations; these

equations arise in many fields like physics, astronomy,

potential theory, fluid dynamics, biological models, and

chemical kinetics. Moreover, equations containing partial

integro-differential equations arise in fluid dynamics,

viscoelasticity, engineering, mathematical biology, financial

mathematics and other disciplines. A functional equation in

which the unknown function appears in the form of it is a

derivative as well as under the integral sign is called an

integro-differential equation (see [10, 11, 14, 15, 16]).

Integro-differential equations; are usually difficult to solve

analytically and numerically; so, it is required to obtain an

efficient approximate solution.

In this paper we will consider the linear Volterra

integro-differential equation of the form (see [2, 4, 7, 8])

.,)(),)()(),(,()(' 000

0

ttutudssustktutFtu

t

t

≥=−= ∫ (1)

Equation (1) can be solved numerically using various

methods (see [6, 9, 10, 11, 12]). In this paper)(ntu will

denote the exact value of u at nhttn += 0 . We shall use

)(~
ntu or nu~ to denote a numerical solution u of at .nt

Since the integral cannot be determined explicitly, it may be

approximated using familiar numerical integration methods.

The Newton-Cotes integration formulae, which include the

2-point closed Newton-Cotes formula is called the

trapezoidal rule, the 3-point rule is known as Simpson’s 1/3

rule, the 4-point closed rule is Simpson’s 3/8 rule, the

5-point closed rule is Boole’s rule (Bode’s rule), Weddle’s

rule, higher rules include the 6-point, 7-point and 8-point are

well suited here since they use nodes which were given in [1,

10, 13,17] and [4, 12].

2. The Numerical Treatment of

Integro-Differential Equations

In general formulas for the numerical solution of

integro-differential equations rely on formulas for the

underlying Ordinary Differential Equation (ODE),

combined with auxiliary quadrature rules approximation of

.)()()(~)(:)(~

0
0

, dssustktuttkhtz

nt

t

jjn

n

j

jnn ∫∑ −≈−=
=

ω (2)

For equation (1), we will adapt the Runge-Kutta-Fehlberg

Method (see in [3, 10, 11, 13]) and method of convergence

)(4hO and)(5hO respectively.

Of course, we have defined approximations)(~
ntz in

terms of appropriate quadrature rules that reflect the

underlying ODE method. The combinations of formulas can

be chosen on the basis of order of convergence. The first

10 Ali Filiz: Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method

involves adapting Runge-Kutta methods. Thus, we will

require to approximate integral terms in (2) at selected

values of t in)(~
ntu . Equation (1) can be solved using

various methods. In this paper we shall focus on fourth and

fifth-order numerical method for equation (1). The integral

term may be approximated using familiar numerical

integration methods. The Newton-Cotes integration

formulae, which include left and right rectangle rules, the

trapezoidal rule, Simpson’s 1/3 rule and Simpson’s 3/8 rule

are well suited here since they used nodes which were

previously calculated [10, 11]:

),(~)()()(

0

,

0

jjn

n

j

jn

t

t

tuttkhdssustk

n

−≈− ∑∫
=

ω

where jn,ω are the appropriate coefficients for the

composite integration schemes chosen. A combination of

integration method may be used.

3. A New Numerical Routine for Linear

Integro-Differential Equation

Now consider the non-dimensional problem (1). In order

to solve (1) numerically, we purpose the use of the

Runge-Kutta methods familiar to most mathematicians. We

consider methods which approximate the solution the initial

value problem (IVP) in equation (1) at time nhttn += 0 ,

n=0, 1, 2, 3… where 1−−= nn tth is the constant nodal

step-size and, in the Example 3.1,

.)()()())()(),(,(

00

dssustktudssustktutF

tt

t

∫∫ −++=− βαγ

For example, the explicit Euler method approximates the

solution to Example 3.1 at 1+nt

.)()(~~

0

)(
1
















+++= ∫

−−
+ dssuetuhuu

nt

t

st
nn

δβαγ

The explicit finite difference method given in [11] as

applied to equation (1) easily extended to more accurate

predictor-corrector method. The predictor step uses

(()))(~,~,(~~
1 nnnnn tzutFhuu +=+) to obtain κ

1
~

+nu , which is

followed by the corrector step, which uses higher order

trapezoidal method

.)(~,~,(
2

1
))(~,~,

2

1~~
1111 















 ++= ++++ nnnnnnnn tzutFtzutFhuu κ
 (3)

This procedure is sometimes referred to as modified Euler

method (second order Runge-Kutta-RK2) and is one order

magnitude more accurate than the explicit Euler method.

The fourth order classical Runge-Kutta method (RK4) can

also be adapted to the numerical solution of equation (1).

Stepping from nu~ with step-size h to obtain 1
~

+nu , the RK4

method as applied to this problem in [10, 11].

The fifth-order Runge-Kutta-Fehlberg and sixth order

Runge-Kutta-Verner methods [3] may be used but not

readily, since the intranodal evaluation points are uniformly

spaced. Consequently, the integrals needed during the

intermediate calculations to step from nt to 1+nt may

require the trapezoidal rule or Lagrange polynomial

interpolating integration on a non-uniform partition

].,[1+nn tt

Other high-order finite difference methods which may be

used here include the Adam-Basforth multistep methods.

One such fourth order method is described in [3]. It uses the

RK4 method to obtain the starting values .,, 210 uuu There

after, the method uses the fourth order explicit

Adam-Basforth method as a predictor and fourth-order

implicit Adam-Moulton method corrector to step from nt

to 1+nt .

Runge-Kutta methods are methods for the numerical

solution of the ODE as follows

,)()),(,()(' 00 utututftu ==

which takes from

∑
=

+ +=
s

i

iinn kbuu

1

1 ,~~

),~,(

1

∑
=

++=
s

j

jijnini kauhcthfk

where

),~,(1 nn uthfk =

),~,(12122 kauhcthfk nn ++=

),~,(23213133 kakauhcthfk nn +++=

…..

).~,(2211 sssssnsns kakakauhcthfk +++++= ⋯

The methods mentioned in this paper are defines by its

Butcher tableau, which puts the coefficients of the method in

the following table

1c 11a 12a ⋯ sa1

2c 21a 22a ⋯ sa2

⋮ ⋮ ⋮ ⋱ ⋮

sc 1sa 2sa ⋯ ssa

 1b 2b ⋯ sb

To specify a particular method, are needs to provide the

integer s and the coefficients ija (for sij ≤<≤1), ib and

ic (for si ,,4,3,2 ⋯=).

The matrix][ija is called the Runge-Kutta matrix, while

Applied and Computational Mathematics 2014; 3(1): 9-14 11

ib and ic are known as the weights and nodes. The explicit

methods are these where the matrix is lower triangular. The

embedded pair proposed by Fehlberg [3]

 0

1/4 1/4

3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197

1 439/216 −8 3680/513 −845/4104

1/2 -8/27 2 −3544/2565 1859/4104 −11/40

16/135 0 6656/12825 28561/56430 −9/50 2/55

25/216 0 1408/2565 2197/4104 −1/5 0

The first row of coefficients at the bottom of the table

gives the fifth-order accurate method, and the second row

gives the fourth-order accurate method.

The Runge-Kutta-Fehlberg Method (denoted RKF) is one

way to try to resolve equation (1). It has a procedure to

determine if the proper step size h is being used. At each

step, two different approximations for the solution are made

and compared. If the two answers are in close agreement, the

approximation is accepted. If the two answers do not agree

to specified accuracy, the step size is reduced. If the answers

agree to more significant digits than required, the step size is

increased. Each step requires the use of the following six

values from 1k to .6k Runge-Kutta-Fehlberg method (RKF)

can also be adapted to the numerical solution of (1).

Stepping from nu~ with step-size h to obtain ,~
1+nu the RKF

method as applied to this problem may be written as:

,))(~,~,(1 nnn tzuthFk =

,
4

1~~
14/1 kuu n

a
n +=+ ,)~,~,(4/14/14/12 +++= n

a
nn zuthFk

[] ,~~

8

~,~, 4/14/14/12 






 ++= +++
a
nnn

a
nn uu

h
zuthFk

,
32

9

32

3~~
218/3 kkuu n

b
n ++=+

,)~,~,(8/38/38/33 +++= n
b
nn zuthFk

[] ,~~

16

3~,~, 8/38/38/33 






 ++= +++
b
nnn

b
nn uu

h
zuthFk

,
2197

7296

2197

7200

2197

1932~~
32113/12

kkkuu n
c
n

+−+=+

,)~,~,(13/1213/1213/124 +++= n
c
nn zuthFk

[] ,
~~

26

12~,
~

,
13/1213/1213/124 







 ++= +++
c
nnn

c
nn uu

h
zuthFk (4)

,
4104

845

513

3680
8

216

439~~
43211 kkkkuu n

d
n −−−+=+

,)~,~,(1115 +++= n
d
nn zuthFk

[] ,~~

2

~,~, 1115 






 ++= +++
d
nnn

d
nn uu

h
zuthFk

,
40

11

4104

1859

2565

3544
2

27

8~~
543212/1 kkkkkuu n

e
n −+−++=+

,)~,~,(2/12/12/16 +++= n
e
nn zuthFk

[] ,~~

4

~,~, 2/12/12/16 






 ++= +++
e
nnn

e
nn uu

h
zuthFk

Then an approximation to the solution of the equation (1)

is made using a Runge-Kutta method of order 4:

,
5

1

4104

2197

2565

1408

216

25~~
54311 kkkkuu nn −+++=+ (5)

where the four function values 431 ,, kkk and 5k are

used. Notice that, 2k is not used in formula (5). A better

value for the solution is determined using a Runge-Kutta

Method of order 5:

.
55

2

50

9

56430

28561

12825

6656

135

16~~
654311 kkkkkuu nn +−+++=+ (6)

In this example, the trapezoidal rule is used to

approximate dssustktz

nt

t

n ∫ −≈
0

)()()(~ on],,[4/1+nn tt

],,[8/3+nn tt

],,[13/12+nn tt

],,[1+nn tt],[2/1+nn tt in

calculating, 2k , 3k ,
 4k , 5k and 6k respectively. If desired,

the trapezoidal rule may be used on],[0 ntt (gives second

order accuracy); the trapezoidal rule and Simpson’s 1/3 rule

(giving third order accuracy, see [10, 11]) may be used on

].,[0 ntt

In order to get fifth order accuracy the integral term must

be evaluated more accurately on],,[4/1+nn tt],,[8/3+nn tt

],,[13/12+nn tt

],,[1+nn tt],[2/1+nn tt in calculating, 2k , 3k ,

4k , 5k and 6k , as shown in (7), (8), (9), (10), (11) below.

The 5-point extended closed rule is Boole's method may

be devised on],[0 ntt as following pseudocode:

Algorithm 1. Boole’s method on],[0 ntt .

Set z(1) to zero

Set u(1) to u0

For all n Compute z(n+1)

If (n==1) then

Set z(n+1) to z(n) + h(u(n) + u(n+1))/2

{the trapezoidal rule}

elseif (n==2) then

Set z(n+1)to z(n-1) + h(u(n-1) + 4u(n) + u(n+1))/3

{Simpson’s 1/3 rule}

elseif (n==3) then

Set z(n+1) to z(n-2) +3h(u(n-2) + 3u(n-1) + 3u(n) +

u(n+1))/8

{Simpson’s 3/8 rule}

elseif (n==4) then

Set z(n+1) to z(n-3) + 2h(7 u(n-3) + 32u(n-2) + 12u(n-1)

+ 32u(n) + 7u(n+1))/45 {Boole’s rule}

12 Ali Filiz: Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method

elseif (n==5) then

Set z(n+1) to z(n-4) + 5h(19u(n-4) + 75u(n-3) + 50u(n-2)

+ 50u(n-1) + 75u(n) + 19u(n+1))/288

elseif (n==6) then

Set z(n+1) to z(n-5) + h(41u(n-5)+ 216 u(n-4) + 27u(n-3)

+ 272u(n-2) + 27 u(n-1) + 216u(n) + 41u(n+1))/140

elseif (n==7) then

Set z(n+1) to z(n-6) + 7h(751u(n-6) + 3577u(n-5) +

1323u(n-4) + 2989u(n-3) + 2989u(n-2) + 1323u(n-1) + …

+ 3577u(n) + 7511u(n+1))/17280

elseif (n==8) then

Set z(n+1) to z(n-3) + 2h(7u(n-3) + 32 u(n-2) + 12u(n-1)

+ 32u(n) + 7u(n+1))/45

elseif (mod(n,4)==0) then

Set z(n+1) to z(n-3) + 2h(7 u(n-3) + 32u(n-2) +

12u(n-1) + 32u(n) + 7u(n+1))/45

elseif (mod(n,4)==1) then

Set z(n+1) to z(n-3) + 2h(7u(n-3) + 32u(n-2) + 12u(n-1)

+ 32u(n) + 7u(n+1))/45

elseif (mod(n,4)==2) then

Set z(n+1) to z(n-3) + 2h(7u(n-3) + 32u(n-2) + 12u(n-1)

+ 32u(n) +7u(n+1))/45

elseif (mod(n,4)==3) then

Compute z(n+1)= z(n-3) + 2h(7u(n-3) + 32u(n-2) +

12u(n-1) + 32u(n) + 7u(n+1))/45

else

Set z(n+1) to z(n-3) + 2h(7u(n-3) + 32u(n-2) + 12u(n-1)

+ 32u(n) + 7u(n+1))/45

end if

return n; u(n) {Returns summation of z(n)}

If we interpolating on 6/112
~,~,~,~

+−− nnnn uuuu (special

formulae required for the first two steps, for example we can

use (5) and (6)) Lagrange’s formula for points t=-2, -1, 0, 1/4

gives

.

)2)((
45

64
)

4
)(2)((2

)2()
4

(
5

4
)()

4
(

9

2

1
)(

4/10

12

3



















+++−++

−+−++−−
=

−−

uhthttu
h

ththt

uht
h

ttuht
h

tt

h
tu

If we integrate the expression between 0 and h/4, we get

.
1536

217

3840

17

1536

1

80

9
)(0124/1

4/

0








 +−+≈ −−∫ uuuuhdssu

h

 (7)

Similarly, we can find t=-2, -1, 0, 3/8

,
496

921

22528

315

4096

9

352

57
)(0128/3

8/3

0








 +−+≈ −−∫ uuuuhdssu

h

 (8)

and find t=-2, -1, 0, 12/13








 +−+≈ −−∫ 01213/12

13/12

0
2197

1554

54925

9216

2197

72

325

114
)(uuuuhdssu

h

 (9)

and find t=-2, -1, 0, 1

,
24

19

24

5

24

1

8

3
)(0121

0








 +−+≈ −−∫ uuuuhdssu

h

 (10)

and finally find t=-2, -1, 0, 1/2

.
192

61

32

1

192

1

24

5
)(0122/1

2/

0








 +−+≈ −−∫ uuuuhdssu

h

 (11)

When n<3 the first two approximations can be found by

formula (4)

Therefore the Runge-Kutta-Fehlberg formulae become

3≥n (for starting values we can use equation (5) and (6))

,))(~,~,(1 nnn tzuthFk =

,
4

1~~
14/1 kuu n

a
n +=+

,)~,~,(4/14/14/12 +++= n
a
nn zuthFk

,
~

1536

217~

3840

17

~

1536

1~

80

9

~,~,

1

24/1

4/14/12





































+

−+
+=

−

−+

++

nn

n
a
n

n
a
nn

uu

uu

hzuthFk

,
32

9

32

3~~
218/3 kkuu n

b
n ++=+

,)~,~,(8/38/38/33 +++= n
b
nn zuthFk

,
~

4096

921~

22528

315

~

4096

9~

352

57

~,~,

1

28/3

8/38/33





































+

−+
+=

−

−+

++

nn

n
b
n

n
b
nn

uu

uu

hzuthFk

,
2197

7296

2197

7200

2197

1932~~
32113/12 kkkuu n

c
n +−+=+

,)~,~,(13/1213/1213/124 +++= n
c
nn zuthFk

,
~

2197

1554~

54925

9216

~

2197

721~

325

114

~,~,

1

213/12

13/1213/124





































+

−+
+=

−

−+

++

nn

n
c
n

n
c
nn

uu

uu

hzuthFk

,
4104

845

513

3680
8

216

439~~
43211 kkkkuu n

d
n −+−+=+

,)~,~,(1115 +++= n
d
nn zuthFk (12)

,
~

24

19~

24

5

~

24

1~

8

3

~,~,

1

21

115





































+

−+
+=

−

−+

++

nn

n
d
n

n
d
nn

uu

uu

hzuthFk

Applied and Computational Mathematics 2014; 3(1): 9-14 13

,
40

11

4104

1859

2565

3544
2

27

8~~
543212/1 kkkkkuu n

e
n −+++−=+

,)~,~,(2/12/12/16 +++= n
e
nn zuthFk

,
~

192

61~

32

1

~

192

1~

24

5

~,~,

1

22/1

2/12/16





































+

−+
+=

−

−+

++

nn

n
e
n

n
e
nn

uu

uu

hzuthFk

to estimate the local error in a Runge-Kutta Method of order

four given by

,
5

1

4104

2197

2565

1408

216

25~~
54311 kkkkuu nn −+++=+

In formula (12), this technique consistent of using a

Runge-Kutta Method with local truncation error of order

five,

.
55

2

50

9

56430

28561

12825

6656

135

16~~
654311 kkkkkuu nn +−+++=+

We can construct an algorithm similar to the sixth,

seventh and eighth-order Runge-Kutta formulae and we can

repeat Example 3.1 using this new method.

Table 1 show the fourth and fifth order accuracy obtained

with this formula. In Example 3.1, we have used

Runge-Kutta-Fehlberg methods and numerical quadrature

rules, such that trapezoidal rule, the 3-point rule is known as

Simpson’s 1/3 rule, the 4-point closed rule is Simpson’s 3/8

rule, the 5-point closed rule is Boole’s rule (Bode’s rule),

Weddle’s rule, higher rules include the 6-point, 7-point and

8-point and their combinations.

Example 3.1: Consider a first order Linear Volterra

integro-differential equation of the form

.)(;0,)()()(' 00
)(

0

ututdssuetutu

t

t

st =≥++= ∫ −−δβαγ (13)

This equation (13) has analytical solution

+

−

+−+
+

−=








 +++−−








 ++++−








 +++−−

γβ

βα

βα
αδβ
γδ

δδαβαδα

δδαβαδα

δδαβαδα

22

22

22

24
2

1

22

0

24
2

1

22

0

24
2

1

22

2

()(

t

t

t

e

ue

uetu

+

−








 +++−−











++++−

0
2

24
2

1

22

24
2

1

22

22

222

2

ue

e

t

t

δα

γβ

δδαβαδα

δδαβαδα

+

−








 +++−−








 ++++−

0

24
2

1

22

0
2

24
2

1

22

22

22

ue

ue

t

t

δβ

δα

δδαβαδα

δδαβαδα

+

−








 +++−−








 ++++−

δγα

δβ

δδαβαδα

δδαβαδα

22

22

24
2

1

22

0

24
2

1

22

t

t

e

ue

+

−








 +++−−








 ++++−

2
0

24
2

1

22

24
2

1

22

22

22

δα

δγα

δδαβαδα

δδαβαδα

ue

e

t

t

 (14)

+

−








 +++−−








 ++++−

2
24

2

1

22

0
2

24
2

1

22

22

22

δγ

δα

δδαβαδα

δδαβαδα

t

t

e

ue

++++

+








 +++−−








 ++++−

22
0

24
2

1

22

2
24

2

1

22

24

22

22

δδαβαβ

δγ

δδαβαδα

δδαβαδα

ue

e

t

t

++++







 ++++−
22

0

24
2

1

22 24

22

δδαβαβ
δδαβαδα

ue
t

++++







 +++−−
22

0

24
2

1

22 24

22

δδαβαδα
δδαβαδα

ue
t

++++







 ++++−
22

0

24
2

1

22 24

22

δδαβαδα
δδαβαδα

ue
t

++++







 +++−−
22

24
2

1

22 24

22

δδαβαδγ
δδαβαδα

t

e

)24)(2(

/)24

22

22
24

2

1

22

22

δδαβαδαβ

δδαβαδγ
δδαβαδα

++++

+++







 ++++−t

e

In solution (14);

Case (i): If we choose 0,1,0,0 =−=== δβαγ , we

obtain)(tu = 0u cos(t).

Case (ii): If we choose 0,1,0,1 =−=== δβαγ , we

obtain)(tu = 0u cos(t) + sin(t).

Case (iii): If we choose 0,1,0,1 ==== δβαγ , we

obtain)(tu = 0u cosh(t) + sinh(t).

Case (iv): If we choose 1,1,0,0 ==== δβαγ , we

obtain .
2

3
sin3

2

3
cos3

3
)(

2/

0 


























+













=

−
tt

e
utu

t

The errors found are given Table 1, where error=|true

value – approximate value|. Unless otherwise indicated, in

this paper, error means absolute error. Table 1 is consistent

with the property that the order of the errors are

)(4hO and)(5hO .

14 Ali Filiz: Numerical Solution of Linear Volterra Integro-Differential Equation using Runge-Kutta-Fehlberg Method

4. Conclusion

After above calculation we are expecting order of)(4hO

and).(5hO In view, it seems to be true because of the

truncation error for Runge-Kutta-Fehlberg and Boole’s rule

are)(4hO and).(5hO Numerical order of convergence is

also calculated:

)2ln(

)2ln()1ln(ErrorError
Ord

−=

We expected that Ord=4 and Ord=5. Obtained theoretical

results are confirmed by numerical experiment.

Table 1. Errors in the Solutions (13) for RKF Method

t
Error1 with h=0.0250 Error2 with h=0.0125 Error3 with h=0.00625

Method A Method B Method A Method B Method A Method B

0.1 4.8696e-08 7.7084e-10 3.0410e-09 2.4070e-11 1.8994e-10 7.5163e-13

0.2 4.8142e-08 7.6159e-10 3.0009e-09 2.3731e-11 1.8726e-10 7.4030e-13

0.3 4.7108e-08 7.4415e-10 2.9308e-09 2.3137e-11 1.8271e-10 7.2092e-13

0.4 4.5603e-08 7.1872e-10 2.8315e-09 2.2295e-11 1.7634e-10 6.9383e-13

0.5 4.3643e-08 6.8557e-10 2.7039e-09 2.1213e-11 1.6820e-10 6.5936e-13

0.6 4.1247e-08 6.4505e-10 2.5492e-09 1.9903e-11 1.5839e-10 6.1773e-13

0.7 3.8439e-08 5.9760e-10 2.3691e-09 1.8379e-11 1.4699e-10 5.6932e-13

0.8 3.5248e-08 5.4373e-10 2.1653e-09 1.6657e-11 1.3412e-10 5.1514e-13

0.9 3.1705e-08 4.8402e-10 1.9400e-09 1.4756e-11 1.1992e-10 4.5519e-13

1.0 2.7845e-08 4.1910e-10 1.6952e-09 1.2697e-11 1.0451e-10 3.9047e-13

A: (0,1,0,0 =−=== δβαγ 1,0,0 max00 === ttu) gives)(4hO .

B: (0,1,0,1 =−=== δβαγ 1,0,0 max00 === ttu) gives)(5hO .

The fifth order Runge-Kutta-Fehlberg Method (RKF) and

numerical quadrature rules (gives error)(4hO and)(5hO).

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions: with Formulas, Graphs and Mathematical Tables,
New York: Dover, 1972, pp. 885–887.

[2] A. Asanov, Uniqueness of the solution of systems of
convolution-type Volterra integral equations of the first kind,
In: Inverse problems for differential equations of the
mathematical physics (Russian), Novasibirsk: Akad. Nauk
SSSR Sibirsk. Otdel. Vychil. Tsentr, 1978, Vol 155, pp. 2–34.

[3] R. L. Burden and J. D. Faires, Numerical Analysis, New York:
Brooks/Cole Publishing Company, USA, 1997, ch.5.

[4] C. T. H. Baker, The Numerical Treatment of Integral
Equations, Clarendon Press; Oxford University Press, 1977.

[5] C. T. H. Baker, G. A. Bochorov, A. Filiz, N. J. Ford, C. A. H.
Paul, F. A. Rihan, A. Tang, R. M. Thomas, H. Tian, D. R.
Wille “Numerical Modelling by Retarded Functional
Differential Equations,” Numerical Analysis Report,
Manchester Center for Computational Mathematics, No:335,
ISS 130-1725,1998.

[6] C. T. H. Baker, G. A. Bochorov, A. Filiz, N. J. Ford, C. A. H.
Paul, F. A. Rihan, A. Tang, R. M. Thomas, H. Tian, D. R.
Wille “Numerical Modelling by Delay and Volterra
Functional Differential Equations,” Numerical Analysis
Report, In: Computer Mathematics and its
Aplications-Advances & Developments (1994-2005), Elias
A. Lipitakis (Editor), LEA Publishers, Athens, Greece, 2006,
pp. 233-256.

[7] R. Bellman, A Survey of the Theory of the Boundedness
Stability and Asymptotic Behaviour of Solutions of Linear
and Non-linear differential and difference equations,
Washington, D. C., 1949.

[8] K. L. Cooke, “Functional differential equations close to
cifferential equation,” Amer. Math. Soc., 1966, Vol.72, pp.
285-288.

[9] A. Filiz, “On the solution of Volterra and Lotka-Volterra Type
Equations,” LMS supported One Day Meeting in Delayed
Differential equation (Liverpool, UK), 12th March 2000.

[10] A. Filiz, “Numerical Solution of Some Volterra Integral
Equations,” PhD Thesis, The University of Manchester,
2000.

[11] A. Filiz, “Fourth-order robust numerical method for
integro-differential equations,” Asian Journal of Fuzzy and
Applied Mathematics, 2013, Vol. 1 I, pp. 28-33.

[12] P. Linz, Analytical and Numerical Methods for Volterra
Equations, SIAM, Philadelphia, 1985.

[13] C. W. Ueberhuber, Numerical Computation 2: Methods,
Software and analysis, Berlin: Springer-Verlag, 1997.

[14] V. Volterra, Leçons Sur la Theorie Mathematique de la Lutte
Pour La Vie, Gauthier-villars, Paris, 1931.

[15] V. Volterra, Theory of Functional and of Integro-Differential
Equations. Dover, New York, 1959.

[16] V. Volterra, “Sulle Equazioni Integro-differenziali Della
Teoria Dell’elastica,” Atti Della Reale Accademia dei Lincei
18 (1909), Reprinted in Vito Volterra, Opera Mathematiche;
Memorie e Note, Vol. 3, Accademia dei Lincei Rome,
1957.

[17] Wolfram MathWorld, Newton-Cotes Formulas,
http://mathworld.wolfram.com/Newton-CotesFormulas.html

