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Abstract: In this paper a new fourth and fifth-order numerical solution of linear Volterra integro-differential equation is 

discussed. One popular technique that uses here for error control is called the Runge-Kutta-Fehlberg method for Ordinary 

Differential Equation (ODE) part and Newton-Cotes formulae for integral parts.  
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1. Introduction 

Mathematical modeling of real-life problems usually 

results in functional equations, like ordinary or partial 

differential equations, and integral and integro-differential 

equations. Many mathematical formulations of physical 

phenomena contain integro-differential equations; these 

equations arise in many fields like physics, astronomy, 

potential theory, fluid dynamics, biological models, and 

chemical kinetics. Moreover, equations containing partial 

integro-differential equations arise in fluid dynamics, 

viscoelasticity, engineering, mathematical biology, financial 

mathematics and other disciplines. A functional equation in 

which the unknown function appears in the form of it is a 

derivative as well as under the integral sign is called an 

integro-differential equation (see [10, 11, 14, 15, 16]). 

Integro-differential equations; are usually difficult to solve 

analytically and numerically; so, it is required to obtain an 

efficient approximate solution. 

In this paper we will consider the linear Volterra 

integro-differential equation of the form (see [2, 4, 7, 8]) 
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Equation (1) can be solved numerically using various 

methods (see [6, 9, 10, 11, 12]). In this paper )( ntu  will 

denote the exact value of u at nhttn += 0 . We shall use 

)(~
ntu  or nu~ to denote a numerical solution u of at .nt  

Since the integral cannot be determined explicitly, it may be 

approximated using familiar numerical integration methods. 

The Newton-Cotes integration formulae, which include the 

2-point closed Newton-Cotes formula is called the 

trapezoidal rule, the 3-point rule is known as Simpson’s 1/3 

rule, the 4-point closed rule is Simpson’s 3/8 rule, the 

5-point closed rule is Boole’s rule (Bode’s rule), Weddle’s 

rule, higher rules include the 6-point, 7-point and 8-point are 

well suited here since they use nodes which were given in [1, 

10, 13,17] and [4, 12].  

2. The Numerical Treatment of 

Integro-Differential Equations 

In general formulas for the numerical solution of 

integro-differential equations rely on formulas for the 

underlying Ordinary Differential Equation (ODE), 

combined with auxiliary quadrature rules approximation of 
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For equation (1), we will adapt the Runge-Kutta-Fehlberg 

Method (see in [3, 10, 11, 13]) and method of convergence 

)( 4hO  and )( 5hO respectively. 

Of course, we have defined approximations )(~
ntz  in 

terms of appropriate quadrature rules that reflect the 

underlying ODE method. The combinations of formulas can 

be chosen on the basis of order of convergence. The first 
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involves adapting Runge-Kutta methods. Thus, we will 

require to approximate integral terms in (2) at selected 

values of t  in )(~
ntu . Equation (1) can be solved using 

various methods. In this paper we shall focus on fourth and 

fifth-order numerical method for equation (1). The integral 

term may be approximated using familiar numerical 

integration methods. The Newton-Cotes integration 

formulae, which include left and right rectangle rules, the 

trapezoidal rule, Simpson’s 1/3 rule and Simpson’s 3/8 rule 

are well suited here since they used nodes  which were 

previously calculated [10, 11]: 
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where jn,ω  are the appropriate coefficients for the 

composite integration schemes chosen. A combination of 

integration method may be used.  

3. A New Numerical Routine for Linear 

Integro-Differential Equation 

Now consider the non-dimensional problem (1). In order 

to solve (1) numerically, we purpose the use of the 

Runge-Kutta methods familiar to most mathematicians. We 

consider methods which approximate the solution the initial 

value problem (IVP) in equation (1) at time nhttn += 0 , 

n=0, 1, 2, 3… where  1−−= nn tth  is the constant nodal 

step-size and, in the Example 3.1, 
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For example, the explicit Euler method approximates the 

solution to Example 3.1 at 1+nt  
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The explicit finite difference method given in [11] as 

applied to equation (1) easily extended to more accurate 

predictor-corrector method. The predictor step uses 

( ( )))(~,~,(~~
1 nnnnn tzutFhuu +=+ ) to obtain κ

1
~

+nu , which is 

followed by the corrector step, which uses higher order 

trapezoidal method 
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This procedure is sometimes referred to as modified Euler 

method (second order Runge-Kutta-RK2) and is one order 

magnitude more accurate than the explicit Euler method. 

The fourth order classical Runge-Kutta method (RK4) can 

also be adapted to the numerical solution of equation (1). 

Stepping from nu~  with step-size h to obtain 1
~

+nu , the RK4 

method as applied to this problem in [10, 11]. 

The fifth-order Runge-Kutta-Fehlberg and sixth order 

Runge-Kutta-Verner methods [3] may be used but not 

readily, since the intranodal evaluation points are uniformly 

spaced. Consequently, the integrals needed during the 

intermediate calculations to step from nt  to 1+nt  may 

require the trapezoidal rule or Lagrange polynomial 

interpolating integration on a non-uniform partition 

].,[ 1+nn tt  

Other high-order finite difference methods which may be 

used here include the Adam-Basforth multistep methods. 

One such fourth order method is described in [3]. It uses the 

RK4 method to obtain the starting values .,, 210 uuu  There 

after, the method uses the fourth order explicit 

Adam-Basforth method as a predictor and fourth-order 

implicit Adam-Moulton method corrector to step from nt  

to 1+nt .  

Runge-Kutta methods are methods for the numerical 

solution of the ODE as follows 
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where  

),~,(1 nn uthfk =  

),~,( 12122 kauhcthfk nn ++=  

),~,( 23213133 kakauhcthfk nn +++=  

….. 

).~,( 2211 sssssnsns kakakauhcthfk +++++= ⋯  

The methods mentioned in this paper are defines by its 

Butcher tableau, which puts the coefficients of the method in 

the following table 

1c  11a  12a  ⋯  sa1  

2c  21a  22a  ⋯  sa2  

⋮  ⋮  ⋮  ⋱  ⋮  

sc  1sa  2sa  ⋯  ssa  

 1b  2b  ⋯  sb  

To specify a particular method, are needs to provide the 

integer s and the coefficients ija  (for sij ≤<≤1 ), ib and 

ic  (for si ,,4,3,2 ⋯= ). 

The matrix ][ ija  is called the Runge-Kutta matrix, while 
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ib and ic are known as the weights and nodes. The explicit 

methods are these where the matrix is lower triangular. The 

embedded pair proposed by Fehlberg [3] 

 0 

 
1/4 1/4 

 
3/8 3/32 9/32 

 
12/13 1932/2197 −7200/2197 7296/2197 

 
1 439/216 −8 3680/513 −845/4104 

 
1/2 -8/27 2 −3544/2565 1859/4104 −11/40 

 

  
16/135 0 6656/12825 28561/56430 −9/50 2/55 

  
25/216 0 1408/2565 2197/4104 −1/5 0 

The first row of coefficients at the bottom of the table 

gives the fifth-order accurate method, and the second row 

gives the fourth-order accurate method. 

The Runge-Kutta-Fehlberg Method (denoted RKF) is one 

way to try to resolve equation (1). It has a procedure to 

determine if the proper step size h  is being used. At each 

step, two different approximations for the solution are made 

and compared. If the two answers are in close agreement, the 

approximation is accepted. If the two answers do not agree 

to specified accuracy, the step size is reduced. If the answers 

agree to more significant digits than required, the step size is 

increased. Each step requires the use of the following six 

values from 1k to .6k Runge-Kutta-Fehlberg method (RKF) 

can also be adapted to the numerical solution of (1). 

Stepping from nu~ with step-size h to obtain ,~
1+nu  the RKF 

method as applied to this problem may be written as: 
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Then an approximation to the solution of the equation (1) 

is made using a Runge-Kutta method of order 4: 
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where the four function values 431 ,, kkk and 5k  are 

used. Notice that, 2k  is not used in formula (5). A better 

value for the solution is determined using a Runge-Kutta 

Method of order 5: 
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In this example, the trapezoidal rule is used to 

approximate dssustktz

nt

t

n ∫ −≈
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],,[ 8/3+nn tt
 

],,[ 13/12+nn tt
 

],,[ 1+nn tt  ],[ 2/1+nn tt  in 

calculating, 2k , 3k ,
 4k , 5k and 6k  respectively. If desired, 

the trapezoidal rule may be used on  ],[ 0 ntt  (gives second 

order accuracy); the trapezoidal rule and Simpson’s 1/3 rule 

(giving third order accuracy, see [10, 11]) may be used on 

].,[ 0 ntt  

In order to get fifth order accuracy the integral term must 

be evaluated more accurately on ],,[ 4/1+nn tt  ],,[ 8/3+nn tt
 

],,[ 13/12+nn tt
 

],,[ 1+nn tt  ],[ 2/1+nn tt  in calculating, 2k , 3k ,
 

4k , 5k and 6k , as shown in  (7), (8), (9), (10), (11) below. 

The 5-point extended closed rule is Boole's method may 

be devised on ],[ 0 ntt  as following pseudocode: 

Algorithm 1. Boole’s method on ],[ 0 ntt . 

Set z(1) to zero 

Set u(1) to u0 

For all n Compute z(n+1) 

If (n==1) then 

Set  z(n+1) to z(n) + h(u(n) + u(n+1))/2 

{the trapezoidal rule} 

elseif (n==2) then 

Set z(n+1)to z(n-1) + h(u(n-1) + 4u(n) + u(n+1))/3 

{Simpson’s 1/3 rule} 

elseif (n==3) then 

Set z(n+1) to z(n-2) +3h(u(n-2) + 3u(n-1) + 3u(n) + 

u(n+1))/8 

{Simpson’s 3/8 rule} 

elseif (n==4) then 

Set z(n+1) to z(n-3) + 2h(7 u(n-3) + 32u(n-2) + 12u(n-1) 

+ 32u(n) + 7u(n+1))/45 {Boole’s rule} 
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elseif (n==5) then 

Set z(n+1) to z(n-4) + 5h(19u(n-4) + 75u(n-3) + 50u(n-2) 

+ 50u(n-1) + 75u(n) + 19u(n+1))/288 

elseif (n==6) then 

Set z(n+1) to z(n-5) + h(41u(n-5)+ 216 u(n-4) + 27u(n-3) 

+ 272u(n-2) + 27 u(n-1) + 216u(n) + 41u(n+1))/140 

elseif (n==7) then 

Set z(n+1) to z(n-6) + 7h(751u(n-6) + 3577u(n-5) + 

1323u(n-4) + 2989u(n-3) + 2989u(n-2) + 1323u(n-1) + … 

+ 3577u(n) + 7511u(n+1))/17280 

elseif (n==8) then 

Set z(n+1) to z(n-3) + 2h(7u(n-3) + 32 u(n-2) + 12u(n-1) 

+ 32u(n) + 7u(n+1))/45 

elseif (mod(n,4)==0) then 

Set  z(n+1) to z(n-3) + 2h(7 u(n-3) + 32u(n-2) + 

12u(n-1) + 32u(n) + 7u(n+1))/45 

elseif (mod(n,4)==1) then 

Set z(n+1) to z(n-3) + 2h(7u(n-3) + 32u(n-2) + 12u(n-1) 

+ 32u(n) + 7u(n+1))/45 

elseif (mod(n,4)==2) then 

Set z(n+1) to z(n-3) + 2h(7u(n-3) + 32u(n-2) + 12u(n-1) 

+ 32u(n) +7u(n+1))/45 

elseif (mod(n,4)==3) then 

Compute z(n+1)= z(n-3) + 2h(7u(n-3) + 32u(n-2) + 

12u(n-1) + 32u(n) + 7u(n+1))/45 

else 

Set z(n+1) to z(n-3) + 2h(7u(n-3) + 32u(n-2) + 12u(n-1) 

+ 32u(n) + 7u(n+1))/45 

end if 

return n; u(n) {Returns summation of z(n)} 

 

 

If we interpolating on 6/112
~,~,~,~

+−− nnnn uuuu  (special 

formulae required for the first two steps, for example we can 

use (5) and (6)) Lagrange’s formula for points t=-2, -1, 0, 1/4 
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If we integrate the expression between 0 and h/4, we get 
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Similarly, we can find t=-2, -1, 0, 3/8 
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and find t=-2, -1, 0, 1 
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and finally find t=-2, -1, 0, 1/2 
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When n<3 the first two approximations can be found by 

formula (4) 

Therefore the Runge-Kutta-Fehlberg formulae become 

3≥n  (for starting values we can use equation (5) and (6)) 
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to estimate the local error in a Runge-Kutta Method of order 

four given by 

,
5

1

4104

2197

2565

1408

216

25~~
54311 kkkkuu nn −+++=+  

In formula (12), this technique consistent of using a 

Runge-Kutta Method with local truncation error of order 

five, 
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We can construct an algorithm similar to the sixth, 

seventh and eighth-order Runge-Kutta formulae and we can 

repeat Example 3.1 using this new method. 

Table 1 show the fourth and fifth order accuracy obtained 

with this formula. In Example 3.1, we have used 

Runge-Kutta-Fehlberg methods and numerical quadrature 

rules, such that trapezoidal rule, the 3-point rule is known as 

Simpson’s 1/3 rule, the 4-point closed rule is Simpson’s 3/8 

rule, the 5-point closed rule is Boole’s rule (Bode’s rule), 

Weddle’s rule, higher rules include the 6-point, 7-point and 

8-point and their combinations. 

Example 3.1: Consider a first order Linear Volterra 

integro-differential equation of the form 
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This equation (13) has analytical solution  
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In solution (14); 

Case (i):  If we choose 0,1,0,0 =−=== δβαγ , we 

obtain )(tu  = 0u cos(t). 

Case (ii): If we choose 0,1,0,1 =−=== δβαγ , we 

obtain )(tu  = 0u cos(t) + sin(t). 

Case (iii): If we choose 0,1,0,1 ==== δβαγ , we 

obtain )(tu  = 0u cosh(t) + sinh(t). 

Case (iv): If we choose 1,1,0,0 ==== δβαγ , we 

obtain .
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The errors found are given Table 1, where error=|true 

value – approximate value|. Unless otherwise indicated, in 

this paper, error means absolute error. Table 1 is consistent 

with the property that the order of the errors are 

)( 4hO and )( 5hO . 
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4. Conclusion 

After above calculation we are expecting order of )( 4hO  

and ).( 5hO  In view, it seems to be true because of the 

truncation error for Runge-Kutta-Fehlberg and Boole’s rule 

are )( 4hO  and ).( 5hO  Numerical order of convergence is 

also calculated: 

)2ln(

)2ln()1ln( ErrorError
Ord

−=  

We expected that Ord=4 and Ord=5. Obtained theoretical 

results are confirmed by numerical experiment.  

Table 1. Errors in the Solutions (13) for RKF Method  

t 
Error1 with h=0.0250 Error2 with h=0.0125 Error3 with h=0.00625 

Method A Method B Method A Method B Method A Method B 

0.1 4.8696e-08 7.7084e-10 3.0410e-09 2.4070e-11 1.8994e-10 7.5163e-13 

0.2 4.8142e-08 7.6159e-10 3.0009e-09 2.3731e-11 1.8726e-10 7.4030e-13 

0.3 4.7108e-08 7.4415e-10 2.9308e-09 2.3137e-11 1.8271e-10 7.2092e-13 

0.4 4.5603e-08 7.1872e-10 2.8315e-09 2.2295e-11 1.7634e-10 6.9383e-13 

0.5 4.3643e-08 6.8557e-10 2.7039e-09 2.1213e-11 1.6820e-10 6.5936e-13 

0.6 4.1247e-08 6.4505e-10 2.5492e-09 1.9903e-11 1.5839e-10 6.1773e-13 

0.7 3.8439e-08 5.9760e-10 2.3691e-09 1.8379e-11 1.4699e-10 5.6932e-13 

0.8 3.5248e-08 5.4373e-10 2.1653e-09 1.6657e-11 1.3412e-10 5.1514e-13 

0.9 3.1705e-08 4.8402e-10 1.9400e-09 1.4756e-11 1.1992e-10 4.5519e-13 

1.0 2.7845e-08 4.1910e-10 1.6952e-09 1.2697e-11 1.0451e-10 3.9047e-13 

A: ( 0,1,0,0 =−=== δβαγ 1,0,0 max00 === ttu ) gives )( 4hO . 

B: ( 0,1,0,1 =−=== δβαγ 1,0,0 max00 === ttu ) gives )( 5hO . 

The fifth order Runge-Kutta-Fehlberg Method (RKF) and 

numerical quadrature rules (gives error )( 4hO  and )( 5hO ). 
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