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Abstract: The Runge-Kutta method is an interesting and precise method for the resolution of ordinary differential 

equations. Fortunately, when supposing the differentiation by any variable that the equation to solve is not variable of, and 

after iterations, the solution of this equation stretches to the algebraic roots of this equation. This feature of this algorithm, 

indeed, allows to solve precisely any scalar or matrix equation. The numerical algorithm proposed herein is an iterative 

procedure of the fourth-order Runge-Kutta method with an adopted precision tolerance of convergence. Also, a method to 

determine all the roots of the polynomial equations is presented. Some scalar and matrix algebraic equations are resolved 

using this proposed algorithm, and show how this algorithm featuring with an excellent precision, a good speed and a 

simplicity for programming to solve equations and deduct the roots. 
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1. Introduction 

Indeed, that there’s a lack in mathematics and numerical 

analysis of theoretical methods or really good precision 

algorithms or techniques for solving scalar or matrix, as 

well as real or complex algebraic equations [1-10], 

especially when these equations being too complex, and 

when the theoretical mathematics stays be unable to 

propose a theoretical solution.  

The Fourth-Order Runge-Kutta R-K method is a precise 

and a converged method for the resolution of the Ordinary 

Differential Equations, and is an effective, efficiency, and 

the most useful method in the science and engineering 

practices [1-10]. The special case when we would integrate 

the Ordinary Differential Equation ODE with any variable 

which the main equation is not function of, this case indeed, 

automatically implicate that the proposed ODE will 

becoming an Algebraic Equation AE, and the seeking 

solution being the AE root. 

Moreover, the roots of the getting AE cannot be precisely 

occurring by the first resolution of this equation using the 

R-K method, because that these roots are unknown and; but 

the started roots of this AE don’t be in general the exact 

roots needed. If we start our search of roots from a scalar 

zero or a null matrix or a vector, so we should need a 

sufficiently number of iterations of the R-K method, 

according to the precision sought, for the root we want 

getting of the proposed AE. Thus, for any so simple or 

complex elementary functions algebraic equations, it shall 

only to iterate the fourth order Runge-Kutta method till the 

convergence will be checked. For the Algebraic Polynomial 

Equations, an algorithm allows us to deduct all the roots of 

any degree of these equations is proposed.  

In fact, this proposed algorithm is concerning any AEs 

that have real or complex roots, and when an Algebraic 

Equation has no real roots, this equation converge 

iteratively to the close point from zero, or the null vector or 

matrix, and then start diverging, so we can conclude that 

we should apply the complex equations technique. 

Among that the proposed algorithm needs often, some 

experience for the regulations of the step of the variable 

integrate on and of the convergence tolerance for the reason 

to get the seeking roots with the precision needed; but in 

reality, is simple to use and programming and its offered 

precision doesn’t ever compared with another existing 

algorithms such that the Newton method. The algorithm 

proposed to determine the roots of polynomial equations 

indeed, is a new proposal in this field and is very useful to 

resolve a large matrix and scalar problems such that the 

Eigen-Values and Eigen-Vectors problems, which present a 
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universal problems in science and engineering. Some scalar 

and matrix AEs are presented and resolved using this 

algorithm, and the resulting illustrations of the iteration 

loops allow us to remark that this proposed numerical 

algorithm is effectively, simple, useful and very precise to 

solve any scalar or matrix AEs for the science and 

engineering practices.  

2. The Elementary Functions Equations 

The elementary functions algebraic equations represent a 

part of complex mathematical equations. For these 

algebraic equations, like all the algebraic equations, the 

iteration procedures of the Fourth-Order-Runge-Kutta 

method, preferred to starts with scalar zero or null vector or 

matrix with a so small step of the variable dividing of, and 

of the tolerance of convergence (the tolerance of the 

convergence can be controlled, by the way of the 

convergence of the equation to resolve or, the differences 

between root iterations). Anyway, the algorithm is very 

simple, such that it iterates on the Runge-Kutta method 

until the convergence is checked.  

Although, we should indicate that some programming 

languages, don’t contain the elementary functions of 

vectors or matrices, and so we have evaluate these kind of 

functions using Taylor series. We should to indicate herein 

too, that we shall avoid starting the roots with the absolute 

scalar zero or null vector or matrix, for some equations 

contains indefinite functions in these abscissas like the 

functions ����� or �������. 

The iterative algorithms, for the resolution of a scalar 

and matrix algebraic equations 	���  and 
��� , are 

formulated as follows: 

�




�




��� � 0                                                          �� � �� �	�������                                   

�� � �� �	����� � 0.5����                   
�� � �� �	����� � 0.5����                   
� � �� �	����� � ����                         
�� � ���� ! ��� � 2�� � 2�� � � � 6⁄

%            (1) 

And, 

�




�




��� � 0                                                               &� � �� �
�������                                       

&� � �� �
����� � 0.5&���                      
&� � �� �
����� � 0.5&���                      
& � �� �
����� � &���                            
�� � ���� ! �&� � 2&� � 2&� � & � 6⁄

%         (2) 

Where, �� is the step of the variable divided by, �'  is 

the scalar root and �' the matrix root for the �() iteration 

of the elementary functions equations 	���  and 
��� , 

respectively. �* and &*  are the +() scalar and matrix Runge-

Kutta method coefficients. 

The checking of the convergence is given by the logical 

expressions: 

	��� , -.�/ and, 
����0, 2� , -.�/ 

Such that -.�/ is the convergence needed. 

As an example, the FORTRAN algorithm for the 

resolution of the equation 	��� � 5 3 -.4���56 � 0  is 

obtained by the instructions: 

K = 0 

X = 0. 

DT = 0.0005 

CONV = 0.00000000001 

DO 

K = K + 1 

K1 = DT*(5. - COS(X)*EXP(X)) 

K2 = DT*(5. - COS(X+0.5*K1)*EXP(X+0.5*K1)) 

K3 = DT*(5. - COS(X+0.5*K2)*EXP(X+0.5*K2)) 

K4 = DT*(5. - COS(X+K3)*EXP(X+K3)) 

X = X + (K1+2.*K2+2.*K3+K4)/6. 

EQA = 5. - COS(X)*EXP(X) 

IF(ABS(EQA)<CONV)EXIT 

ENDDO 

WRITE(*,*)K,X,EQA 

After execution, we get: & � 1687  � � 4.755426629255660   <=> � 9.504397269211040E 3 012  

3. The Polynomial Equations 

The polynomial equations have a special consideration in 

science and engineering, because of their considerable use 

and applicability in practice. The Eigen-values and Eigen-

vectors problems or the Optimal Control Matrix Riccati 

equation are two examples of their applicability. The 

method proposed herein; present an algorithm to follow for 

the reason to find all the roots of any polynomial equation, 

using of course the iteration on the Runge-Kutta method to 

resolve. 

Suppose that we have the arbitrary Polynomial Equation 

of degree �: 

AB��� � �B � CB��B�� � CB����B�� � D � C�� � 0   (3) 

Such that C'�
 are the constant coefficients of this 

equation, and �  represent the �  roots of AB��� � 0 , and 

such that the upper index “ 1 ” of C'  represent the first 

polynomial equation given AB��� � 0. 

3.1. Viète Theorem 

The theorem that will be formulated in fact cannot find 

the roots for any polynomial equation; but only formulates 

the relations between the roots and the constant coefficients 

of such equation. The Viète theorem is formulates as 

follows: 
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The roots of any polynomial equation, like the 

polynomial given by equation (1), and its coefficients shall 

be satisfying the following relations: 

CB�'E� � �31�'F'   �� � 1, 2, … �� 

Where F'  are elementary symmetric functions of ��,  ��, … �B: 

F� � H �'
B

�I�
 

F� � H ���J
B

�K�LJ
 

F� � H ���J�'
B

�K�LJL'
 

M 
FB � ������ … �B 

3.2. The Method to Find the Roots 

Suppose that we have the polynomial scalar equation of 

degree � given by (3) or the polynomial matrix equation:  

AB��� � �B � NB��B�� � NB����B�� � D � N�� � 0    (4) 

such that N'�  are the matrix constants coefficients, �  are 

the � matrix or vector roots of the matrix equation (4) and � its degree. The upper index N' has the same definition as C'. 

Suppose that, the scalar O or the matrix or vector � are 

given by: 

O � 40P�QCB�R,       � � FSTUQNB�R             (5) 

Such that, 40P��C'��  is the scalar sign of C'�
, and FSTU�N'�� is the matrix sign of N'� , and for a constant 

coefficient NV*  the outer index + represent the incremental 

number, though the lower index W represent the number of 

the constant coefficients in the polynomial equation.  

Thus, the first scalar root of AB��� and AB���, iterating 

on 0 X 1 until convergence, are given by: 

�




�




�

��� � 0                                                                                
�� � �� �AB��������                                                       
�� � �� �AB������ � 0.5����                                       
�� � �� �AB������ � 0.5����                                       
� � �� �AB������ � ����                                             
��� � ����� � �31�BE�O ��� � 2�� � 2�� � � � 6⁄

%    (6) 

And, 

�




�




�

��� � 0                                                                                     
&� � �� �ABQ�����R�                                                          
&� � �� �ABQ����� � 0.5&�R�                                         
&� � �� �ABQ����� � 0.5&�R�                                         
& � �� �ABQ����� � &�R�                                               
��� � ����� � �31�BE�� �&� � 2&� � 2&� � & � 6⁄

%  (7) 

Where, �� �* and &*  are the same as declared in section 

2. ���  is the first scalar root and ���  the first matrix or 

vector root for the 0()  iteration of the polynomials 

equations AB��� and AB���, respectively. 

The checking of the convergence is too, expressed in 

section 2. Replacing 	��� by AB��� and 
��� by AB���. 

For the remaining scalar or matrix or vector roots, we 

shall to solve the getting polynomial equations, every time 

after decomposition and decline the preceding root. For the �� � 1�() roots (1 Y � Y � 3 1), the polynomial equations 

become: 

 

AB�'��� � �B�' � CB�''E��B�'�� � CB�'��'E��B�'�� � D � C�'E� � 0                           (8) 

AB�'��� � �B�' � NB�''E��B�'�� � NB�'��'E��B�'�� � D � N�'E� � 0                         (9) 

Where,  

�


�



�O � 40P�Q�B�' � CB�'��'�B�'�� � CB�'��'�B�'�� � D � C�'R

CB�''E�     � CB�'E�'��'                                                                         
CB�'��'E� � CB�''�CB�''E��'                                                              CB�'��'E� � CB�'��'�CB�'��'E��'                                                     M                                        C�'E�           � C�'�C�'E��'                                                                      

%                               (10) 

We should then, follow the iterative Runge-Kutta algorithm: 
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�




�

�'E�� � 0                                                                                                                         
�� � �� �AB��'E������                                                                                                
�� � �� �AB��'E���� � 0.5����                                                                                
�� � �� �AB��'E���� � 0.5����                                                                                
� � �� �AB��'E���� � ����                                                                                      
�'E�� � �'E���� � �31�'E�O ��� � 2�� � 2�� � � � 6⁄     	.Z  � [ �� 3 1��B � 3C�B � 3�C�B � �B���                                                      	.Z  � � �� 3 1�

%                (11) 

The same algorithm would be get, by changing small letters by capital ones, we obtain: 

�


�



� � � FSTUQ�B�' � NB�''�B�'�� � NB�'��'�B�'�� � D � N�'R

NB�''E�      � NB�'E�'��'                                                                        NB�'��'E�  � NB�''�NB�''E��'                                                           NB�'��'E�  � NB�'��'�NB�'��'E��'                                                    M                                        N�'E�            � N�'�N�'E��'                                                                     

%                               (12) 
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�






��'E�� � 0                                                                                                                               

&� � �� �ABQ�'E����R�                                                                                                    
&� � �� �ABQ�'E���� � 0.5&�R�                                                                                   
&� � �� �ABQ�'E���� � 0.5&�R�                                                                                   
& � �� �ABQ�'E���� � &�R�                                                                                         
�'E�� � �'E���� � �31�'E�O �&� � 2&� � 2&� � & � 6⁄      	.Z  � [ �� 3 1��B � 3N�B � 3�N�B � �B���                                                         	.Z  � � �� 3 1�

%            (13) 

The following FORTRAN listing, represent the algorithm to resolve the polynomial equation: 

AB��� � �\ 3 32�] 3 33� 3 2468�� � 9596�� 3 2400� 3 14400 � 0 

   N = 6 

   L = 6 

   DT = 0.0001 

   CONV = 0.00000000002 

   B(1,N) = -32. 

   B(1,N-1) = -33. 

   B(1,N-2) = -2468.  

   B(1,N-3) = 9596.  

   B(1,N-4) = -2400. 

   B(1,N-5) = -14400. 

   D = B1(1,N) 

 

   DO I = 1, N - 1 

 

       K = 0 

       X = 0. 

 

       SIGNE = (-1)**(L+1) 

 

       DO 

 

            K = K + 1 

 

            K1 = X**L 

            DO LL = 1, L 

                 K1 = K1 + B(I,LL)*(X**(LL-1)) 

            ENDDO 

            K1 = REAL(DT)*K1 

 

            K2 = (X+0.5*K1)**L 

            DO LL = 1, L 

                 K2 = K2 + B(I,LL)*((X+0.5*K1)**(LL-1)) 

            ENDDO 

            K2 = REAL(DT)*K2 

 

            K3 = (X+0.5*K2)**L 

            DO LL = 1, L 

                 K3 = K3 + B(I,LL)*((X+0.5*K2)**(LL-1)) 

            ENDDO 

            K3 = REAL(DT)*K3 

 

            K4 = (X+K3)**L 

            DO LL = 1, L 

                 K4 = K4 + B(I,LL)*((X+K3)**(LL-1)) 

            ENDDO 

            K4 = REAL(DT)*K4 

 

            X=X+SIGNE*SIGN(F,R)*(K1+2.*K2+2.*K3+K4) 

/6.  
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            EQA = X**L 

            DO LL = 1, L 

   EQA = EQA + B(I,LL)*(X**(LL-1)) 

            ENDDO 

 

            IF(ABS(EQA)<CONV)EXIT 

 

       ENDDO 

 

  10 WRITE(*,*)K,X,EQA 

       IF(K==0)EXIT 

       L = L - 1  

 

        D = X**L 

        DO LL = 1, L-1 

            D = D + A(I,LL)*(X**(LL-1)) 

        ENDDO 

 

        B(I+1,L) = B(I,L+1) + X 

        DO LL = L-1, 1, -1 

             B(I+1,LL) = B(I,LL+1) + B(I+1,LL+1)*X 

         ENDDO 

 

         IF(I==N-1)THEN 

            X = -B(I+1,L) 

            K = 0 

            EQA = X + B(I+1,L) 

            GOTO 10 

         ENDIF 

    ENDDO 

The output results of this equation are the following: 

�

�

�

& � 23,             � �    1.999999999999998,         <=> � 31.807620719773695< 3 011& � 62,             � � 31.000000000000001,         <=> � 31.942623839568114< 3 011& � 43,             � � 312.000000000000000,       <=> �    1.455191522836685< 3 011& � 8233,        � �    3.999999999999392,          <=> �    1.983835318242200< 3 011& � 8532,        � �   5.000000000000021,           <=> � 31.999467258428922< 3 011& � 0,               � � 329.999999999979420,        <=> � 0                                                           
% 

 

4. Complex Roots 

Indeed, that there are be infinite equations that have no 

real roots; the complex solutions in this case represent the 

roots of such equations. As examples of these equations 	��� � -.4��� ! 2 � 0, 	��� � 56 � 1 � 0, 	��� � �� �1 � 0 and so on. The proposed algorithm is also available 

to solve these equations of complex roots. We have then to 

declare the equation 	���  or AB��� , the roots � , the 

coefficients of the Runge-Kutta method and �� as complex 

variables, and the method is available for matrix equations 

or polynomial equations. The resolution of the equation 	��� � 56 � 7 � 0 in the FORTRAN code can be listing 

by the algorithm: 

   K = 0 

   X = 0. 

   DT = (0.001,0.001) 

   CONV = 0.00000000001 

 

   DO 

         K = K + 1  

         K1 = DT*(7. + EXP(X)) 

         K2 = DT*(7. + EXP(X+0.5*K1)) 

         K3 = DT*(7. + EXP(X+0.5*K2)) 

         K4 = DT*(7. + EXP(X+K3)) 

 

         X = X + (K1+2.*K2+2.*K3+K4)/6. 

 

         EQAC = 7. + EXP(X) 

 

         

IF(ABS(REAL(EQAC))<CONV.AND.ABS(IMAG(EQAC

))<CONV)EXIT 

 

   ENDDO 

   WRITE(6,*)K,X,EQAC 

The obtained results are: & � 4148  � � 1.945910149053894 � 03.141592653591149  <=> � 9.936940159605001< 3 012 � 0 39.486664654775595< 3 012  

5. Numerical Examples 

• Example 1 

The first example extend and illustrates the variations of 

the matrix algebraic equation A����� � �� 3 > � 0 and its 

roots, such that � represent the square-roots matrices of the 

matrix > . The matrix >  is a �5 ^ 5�  such that all the 

elements of this matrix ��J � 2. The figure 1, Shows the 

converged variations of the elements of the matrix 

polynomial equations A����  and A����  and their roots 

elements versus the iterations numbers. The Table 1, offers 

the final converged results of A����  and A����  and their 

roots elements and the numbers of iterations needed for the 

convergence. 

 

Figure 1. The equations and roots variations vs. iterations (Example 1) 
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• Example 2 

In this example we show illustratively and numerically 

the results of the resolution of the matrix polynomial 

equation: 

A]���� � �] � N]� � N �� � N��� � N�� � N� � 0 

Such that all the composed matrices of this equation are �5 ^ 5� and, the constant matrices elements are given by: 

C]�J � 9,   C �J � 3515,   C��J � 311925,   C��J� 443250,   C��J � 32835000 

Figure 2, shows the curves of the variations of the initial 

polynomial equation A]���, and the derived polynomials 

equations elements, versus the numbers of iterations needed 

for the convergence; though, Figure 3, illustrates the 

variations of the roots elements. The Table 1, shows the 

final converged results. 

 

Figure 2. The variations of the polynomial matrix equation and the 

equations derived (Example 2) 

 

Figure 3. The variations of the polynomial matrix roots (Example 2) 

• Example 3 

In this example, we resolve the elementary scalar 

equation 	���� � 5 3 56-.4��� � 0. Figure 4 and Table 1, 

show and illustrate the results. 

 

Figure 4. The variations of the equation and its root vs. iteration 

(Example 3) 

• Example 4 

We are occupied in this example to solve the scalar 

equation 	���� � -.4��� 3 ����� � 0 . The variations of 	���  and �  are shown by Figure 5. Although, the final 

converged results are given by Table 1. 

 

Figure 5. The variations of the equation and its root vs. iteration 

(Example 4) 

 

 

Table 1. The converged final results of the Examples 1, 2, 3 and 4  

Equations Roots 
Iteratio

ns 

A�� 

A�� 

-
1.00608410491531

7E-012 

���J 
6.32455532033516

8E-001 
911 

A�� 
1.00186525742174

1E-012 
���J 

-
6.32455532032520

0E-001 

5407 

A]� 

A]� 
1.86264514923095

7E-008 
���J 

-
8.99999999999999

8 

48 

A � 
1.74622982740402

2E-009 
���J 

-
12.0000000000000

00 

100 

A�� 
4.54747350886464

1E-013 
���J 1.99999999999993

2 
492 

A�� 
1.00897068477934

2E-012 
� �J 

3.00000000000003

0 
3122 

A�� 0 �]�J 7.00000000000003

6 
0 

	� 
9.50439726921104

0E-012 
� 

4.75542662925566
0 

1687 

	� 
9.91978119655248

5E-013 
� 

1.30296400121544

0 
3262 
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6. Results and Discussion 

Indeed, that the results (the roots) of the examples taken 

of the different algebraic equations are much converged to 

the exact solutions. As it is shown by the different Figures 

and the Table 1, the convergence of the elementary 

functions equations or polynomials can be exceeds in 

general 1 10�_⁄ , and their roots precision reach the order of 1 10� ⁄ . As it is shown by Figure 1, and clear by Table 1, 

that the convergence of the equation approaches to 1 10��⁄  

and the sum of its total iteration number approaches to 6500 such that its two roots represent the square-roots of 

the matrix >, and the second root can be simply deducted 

without iterations, using the algorithm and the Fortran 

listing instructions of section 3. The matrix polynomial 

equation of degree 5  of the example 2, its convergence 

alternates from 1 10`⁄  to 1 10��⁄ and its total iteration 

number doesn’t exceed 4000 . Although, the elementary 

functions equations of examples 3 and 4, their convergence 

precision exceeds 1 10��⁄  with a number of iterations less 

than 3500. According to the step �� adopted, the number 

of iterations doesn’t exceed 10000 , which can take a 

fraction of a second for the resolution. Moreover, the 

experience of this algorithm, can allow us to conclude that, 

when ��  increases, the number of iterations decreases 

considerably. Also, when we would get good precision, we 

would of course decrease the tolerance of convergence, and 

this operation doesn’t in fact, increase the number of 

iterations greatly. Although, when the tolerance of 

convergence decreasing, for the reason to get good 

precision, we have to take in our account probably that this 

change leads to decrease the step ��. As it is presented by 

Table 1, for the polynomials, the numbers of iterations 

increase considerably from the first equation (the original 

equation given) to the last equation deducted. 

7. Conclusion 

As we have indicated that the Runge-Kutta method is a 

good and precise method for the resolution of ordinary 

differential equations, and the remark that for constant 

equations coefficients, the iterative procedure of this 

method leads to these algebraic equations roots. Although, 

in the absent of precise algorithms to resolve every real or 

complex elementary functions or polynomial algebraic 

equations, the algorithm presented can resolve any 

algebraic equation with good precision that can regulated as 

we need such is demonstrated by the arbitrary examples 

presented (for all the examples presented, the tolerance of 

convergence at least , 1 10`⁄ ). The presented algorithm 

and the method presented in section 3, allow us to 

determine all the roots of any matrix or scalar polynomial 

equation like the scalar polynomials of the Eigen-values 

and the matrix equations of the Eigen-vectors. The 

algorithm presented too, is very simple for programming as 

presented in sections 2, 3 and 4 and some instructions lines 

can resolve any simple or complex equation. Moreover, 

with a personnel computer, any complex equation can be 

resolved with good precision and as possible, with a small 

number of iterations. As shown by the Figures presented, 

that the algorithm automatically refines its roots 

contributions considerably as possible only and, according 

to that the exact equation solution is considerably close, 

and according to the step �� and the convergence number 

adopted, the feature that make it very precise and economic 

algorithm as well in the time of solving and in the iterations 

numbers. Probably that the algorithm proposed as extended, 

needs some experience about the step �� and the tolerance 

of the convergence; but presents indeed, a new accurate 

numerical technique for solving any scalar or matrix 

algebraic equation with good precision and good execution 

speed, and the method proposed in section 3, for deducting 

all the remaining roots of polynomials, when the preceding 

are computed, is in fact a new idea and a new proposal for 

solving polynomial equations.  

As a future development using this algorithm, we will 

start solving the problem of proper-frequencies (the Eigen-

values) and the mode-shapes (the Eigen-vectors) for the 

semi-explicit solving of the dynamic equilibrium equation 

of structures subjected to dynamic arbitrary loading. The 

algorithm too, can be used to solve the two degree Riccati 

matrix algebraic equation for the optimal control of 

dynamic systems. 
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