

Applied and Computational Mathematics
2014; 3(3): 68-74

Published online May 30, 2014 (http://www.sciencepublishinggroup.com/j/acm)

doi: 10.11648/j.acm.20140303.11

A numerical algorithm for the resolution of scalar and
matrix algebraic equations using Runge-Kutta method

Tahar Latreche

Doctorate student in Civil Engineering, B.P. 129 Salem Lalmi, 40003 Khenchela, Algeria

Email address:
latrache.tahar@yahoo.ca

To cite this article:
Tahar Latreche. A numerical Algorithm for the Resolution of Scalar and Matrix Algebraic Equations Using Runge-Kutta Method. Applied

and Computational Mathematics. Vol. 3, No. 3, 2014, pp. 68-74. doi: 10.11648/j.acm.20140303.11

Abstract: The Runge-Kutta method is an interesting and precise method for the resolution of ordinary differential

equations. Fortunately, when supposing the differentiation by any variable that the equation to solve is not variable of, and

after iterations, the solution of this equation stretches to the algebraic roots of this equation. This feature of this algorithm,

indeed, allows to solve precisely any scalar or matrix equation. The numerical algorithm proposed herein is an iterative

procedure of the fourth-order Runge-Kutta method with an adopted precision tolerance of convergence. Also, a method to

determine all the roots of the polynomial equations is presented. Some scalar and matrix algebraic equations are resolved

using this proposed algorithm, and show how this algorithm featuring with an excellent precision, a good speed and a

simplicity for programming to solve equations and deduct the roots.

Keywords: Algebraic Equations, Linear and Non-Linear Algebra, Elementary Equations, Polynomial Equations,

Runge-Kutta Method

1. Introduction

Indeed, that there’s a lack in mathematics and numerical

analysis of theoretical methods or really good precision

algorithms or techniques for solving scalar or matrix, as

well as real or complex algebraic equations [1-10],

especially when these equations being too complex, and

when the theoretical mathematics stays be unable to

propose a theoretical solution.

The Fourth-Order Runge-Kutta R-K method is a precise

and a converged method for the resolution of the Ordinary

Differential Equations, and is an effective, efficiency, and

the most useful method in the science and engineering

practices [1-10]. The special case when we would integrate

the Ordinary Differential Equation ODE with any variable

which the main equation is not function of, this case indeed,

automatically implicate that the proposed ODE will

becoming an Algebraic Equation AE, and the seeking

solution being the AE root.

Moreover, the roots of the getting AE cannot be precisely

occurring by the first resolution of this equation using the

R-K method, because that these roots are unknown and; but

the started roots of this AE don’t be in general the exact

roots needed. If we start our search of roots from a scalar

zero or a null matrix or a vector, so we should need a

sufficiently number of iterations of the R-K method,

according to the precision sought, for the root we want

getting of the proposed AE. Thus, for any so simple or

complex elementary functions algebraic equations, it shall

only to iterate the fourth order Runge-Kutta method till the

convergence will be checked. For the Algebraic Polynomial

Equations, an algorithm allows us to deduct all the roots of

any degree of these equations is proposed.

In fact, this proposed algorithm is concerning any AEs

that have real or complex roots, and when an Algebraic

Equation has no real roots, this equation converge

iteratively to the close point from zero, or the null vector or

matrix, and then start diverging, so we can conclude that

we should apply the complex equations technique.

Among that the proposed algorithm needs often, some

experience for the regulations of the step of the variable

integrate on and of the convergence tolerance for the reason

to get the seeking roots with the precision needed; but in

reality, is simple to use and programming and its offered

precision doesn’t ever compared with another existing

algorithms such that the Newton method. The algorithm

proposed to determine the roots of polynomial equations

indeed, is a new proposal in this field and is very useful to

resolve a large matrix and scalar problems such that the

Eigen-Values and Eigen-Vectors problems, which present a

 Applied and Computational Mathematics 2014; 3(3): 68-74 69

universal problems in science and engineering. Some scalar

and matrix AEs are presented and resolved using this

algorithm, and the resulting illustrations of the iteration

loops allow us to remark that this proposed numerical

algorithm is effectively, simple, useful and very precise to

solve any scalar or matrix AEs for the science and

engineering practices.

2. The Elementary Functions Equations

The elementary functions algebraic equations represent a

part of complex mathematical equations. For these

algebraic equations, like all the algebraic equations, the

iteration procedures of the Fourth-Order-Runge-Kutta

method, preferred to starts with scalar zero or null vector or

matrix with a so small step of the variable dividing of, and

of the tolerance of convergence (the tolerance of the

convergence can be controlled, by the way of the

convergence of the equation to resolve or, the differences

between root iterations). Anyway, the algorithm is very

simple, such that it iterates on the Runge-Kutta method

until the convergence is checked.

Although, we should indicate that some programming

languages, don’t contain the elementary functions of

vectors or matrices, and so we have evaluate these kind of

functions using Taylor series. We should to indicate herein

too, that we shall avoid starting the roots with the absolute

scalar zero or null vector or matrix, for some equations

contains indefinite functions in these abscissas like the

functions ����� or �������.

The iterative algorithms, for the resolution of a scalar

and matrix algebraic equations 	��� and
��� , are

formulated as follows:

�

�

��� � 0 �� � �� �	�������

�� � �� �	����� � 0.5����
�� � �� �	����� � 0.5����
� � �� �	����� � ����
�� � ���� ! ��� � 2�� � 2�� � � � 6⁄

% (1)

And,

�

�

��� � 0 &� � �� �
�������

&� � �� �
����� � 0.5&���
&� � �� �
����� � 0.5&���
& � �� �
����� � &���
�� � ���� ! �&� � 2&� � 2&� � & � 6⁄

% (2)

Where, �� is the step of the variable divided by, �' is

the scalar root and �' the matrix root for the �() iteration

of the elementary functions equations 	��� and
��� ,

respectively. �* and &* are the +() scalar and matrix Runge-

Kutta method coefficients.

The checking of the convergence is given by the logical

expressions:

	��� , -.�/ and,
����0, 2� , -.�/

Such that -.�/ is the convergence needed.

As an example, the FORTRAN algorithm for the

resolution of the equation 	��� � 5 3 -.4���56 � 0 is

obtained by the instructions:

K = 0

X = 0.

DT = 0.0005

CONV = 0.00000000001

DO

K = K + 1

K1 = DT*(5. - COS(X)*EXP(X))

K2 = DT*(5. - COS(X+0.5*K1)*EXP(X+0.5*K1))

K3 = DT*(5. - COS(X+0.5*K2)*EXP(X+0.5*K2))

K4 = DT*(5. - COS(X+K3)*EXP(X+K3))

X = X + (K1+2.*K2+2.*K3+K4)/6.

EQA = 5. - COS(X)*EXP(X)

IF(ABS(EQA)<CONV)EXIT

ENDDO

WRITE(*,*)K,X,EQA

After execution, we get: & � 1687 � � 4.755426629255660 <=> � 9.504397269211040E 3 012

3. The Polynomial Equations

The polynomial equations have a special consideration in

science and engineering, because of their considerable use

and applicability in practice. The Eigen-values and Eigen-

vectors problems or the Optimal Control Matrix Riccati

equation are two examples of their applicability. The

method proposed herein; present an algorithm to follow for

the reason to find all the roots of any polynomial equation,

using of course the iteration on the Runge-Kutta method to

resolve.

Suppose that we have the arbitrary Polynomial Equation

of degree �:

AB��� � �B � CB��B�� � CB����B�� � D � C�� � 0 (3)

Such that C'�
 are the constant coefficients of this

equation, and � represent the � roots of AB��� � 0 , and

such that the upper index “ 1 ” of C' represent the first

polynomial equation given AB��� � 0.

3.1. Viète Theorem

The theorem that will be formulated in fact cannot find

the roots for any polynomial equation; but only formulates

the relations between the roots and the constant coefficients

of such equation. The Viète theorem is formulates as

follows:

70 Tahar Latreche: A numerical Algorithm for the Resolution of Scalar and Matrix Algebraic Equations Using Runge-Kutta Method

The roots of any polynomial equation, like the

polynomial given by equation (1), and its coefficients shall

be satisfying the following relations:

CB�'E� � �31�'F' �� � 1, 2, … ��

Where F' are elementary symmetric functions of ��, ��, … �B:

F� � H �'
B

�I�

F� � H ���J
B

�K�LJ

F� � H ���J�'
B

�K�LJL'

M
FB � ������ … �B

3.2. The Method to Find the Roots

Suppose that we have the polynomial scalar equation of

degree � given by (3) or the polynomial matrix equation:

AB��� � �B � NB��B�� � NB����B�� � D � N�� � 0 (4)

such that N'� are the matrix constants coefficients, � are

the � matrix or vector roots of the matrix equation (4) and � its degree. The upper index N' has the same definition as C'.

Suppose that, the scalar O or the matrix or vector � are

given by:

O � 40P�QCB�R, � � FSTUQNB�R (5)

Such that, 40P��C'�� is the scalar sign of C'�
, and FSTU�N'�� is the matrix sign of N'� , and for a constant

coefficient NV* the outer index + represent the incremental

number, though the lower index W represent the number of

the constant coefficients in the polynomial equation.

Thus, the first scalar root of AB��� and AB���, iterating

on 0 X 1 until convergence, are given by:

�

�

�

��� � 0
�� � �� �AB��������
�� � �� �AB������ � 0.5����
�� � �� �AB������ � 0.5����
� � �� �AB������ � ����
��� � ����� � �31�BE�O ��� � 2�� � 2�� � � � 6⁄

% (6)

And,

�

�

�

��� � 0
&� � �� �ABQ�����R�
&� � �� �ABQ����� � 0.5&�R�
&� � �� �ABQ����� � 0.5&�R�
& � �� �ABQ����� � &�R�
��� � ����� � �31�BE�� �&� � 2&� � 2&� � & � 6⁄

% (7)

Where, �� �* and &* are the same as declared in section

2. ��� is the first scalar root and ��� the first matrix or

vector root for the 0() iteration of the polynomials

equations AB��� and AB���, respectively.

The checking of the convergence is too, expressed in

section 2. Replacing 	��� by AB��� and
��� by AB���.

For the remaining scalar or matrix or vector roots, we

shall to solve the getting polynomial equations, every time

after decomposition and decline the preceding root. For the �� � 1�() roots (1 Y � Y � 3 1), the polynomial equations

become:

AB�'��� � �B�' � CB�''E��B�'�� � CB�'��'E��B�'�� � D � C�'E� � 0 (8)

AB�'��� � �B�' � NB�''E��B�'�� � NB�'��'E��B�'�� � D � N�'E� � 0 (9)

Where,

�

�

�O � 40P�Q�B�' � CB�'��'�B�'�� � CB�'��'�B�'�� � D � C�'R

CB�''E� � CB�'E�'��'
CB�'��'E� � CB�''�CB�''E��' CB�'��'E� � CB�'��'�CB�'��'E��' M C�'E� � C�'�C�'E��'

% (10)

We should then, follow the iterative Runge-Kutta algorithm:

 Applied and Computational Mathematics 2014; 3(3): 68-74 71

�

�

�

�'E�� � 0
�� � �� �AB��'E������
�� � �� �AB��'E���� � 0.5����
�� � �� �AB��'E���� � 0.5����
� � �� �AB��'E���� � ����
�'E�� � �'E���� � �31�'E�O ��� � 2�� � 2�� � � � 6⁄ 	.Z � [�� 3 1��B � 3C�B � 3�C�B � �B��� 	.Z � � �� 3 1�

% (11)

The same algorithm would be get, by changing small letters by capital ones, we obtain:

�

�

� � � FSTUQ�B�' � NB�''�B�'�� � NB�'��'�B�'�� � D � N�'R

NB�''E� � NB�'E�'��' NB�'��'E� � NB�''�NB�''E��' NB�'��'E� � NB�'��'�NB�'��'E��' M N�'E� � N�'�N�'E��'

% (12)

�

�

��'E�� � 0

&� � �� �ABQ�'E����R�
&� � �� �ABQ�'E���� � 0.5&�R�
&� � �� �ABQ�'E���� � 0.5&�R�
& � �� �ABQ�'E���� � &�R�
�'E�� � �'E���� � �31�'E�O �&� � 2&� � 2&� � & � 6⁄ 	.Z � [�� 3 1��B � 3N�B � 3�N�B � �B��� 	.Z � � �� 3 1�

% (13)

The following FORTRAN listing, represent the algorithm to resolve the polynomial equation:

AB��� � �\ 3 32�] 3 33� 3 2468�� � 9596�� 3 2400� 3 14400 � 0

 N = 6

 L = 6

 DT = 0.0001

 CONV = 0.00000000002

 B(1,N) = -32.

 B(1,N-1) = -33.

 B(1,N-2) = -2468.

 B(1,N-3) = 9596.

 B(1,N-4) = -2400.

 B(1,N-5) = -14400.

 D = B1(1,N)

 DO I = 1, N - 1

 K = 0

 X = 0.

 SIGNE = (-1)**(L+1)

 DO

 K = K + 1

 K1 = X**L

 DO LL = 1, L

 K1 = K1 + B(I,LL)*(X**(LL-1))

 ENDDO

 K1 = REAL(DT)*K1

 K2 = (X+0.5*K1)**L

 DO LL = 1, L

 K2 = K2 + B(I,LL)*((X+0.5*K1)**(LL-1))

 ENDDO

 K2 = REAL(DT)*K2

 K3 = (X+0.5*K2)**L

 DO LL = 1, L

 K3 = K3 + B(I,LL)*((X+0.5*K2)**(LL-1))

 ENDDO

 K3 = REAL(DT)*K3

 K4 = (X+K3)**L

 DO LL = 1, L

 K4 = K4 + B(I,LL)*((X+K3)**(LL-1))

 ENDDO

 K4 = REAL(DT)*K4

 X=X+SIGNE*SIGN(F,R)*(K1+2.*K2+2.*K3+K4)

/6.

72 Tahar Latreche: A numerical Algorithm for the Resolution of Scalar and Matrix Algebraic Equations Using Runge-Kutta Method

 EQA = X**L

 DO LL = 1, L

 EQA = EQA + B(I,LL)*(X**(LL-1))

 ENDDO

 IF(ABS(EQA)<CONV)EXIT

 ENDDO

 10 WRITE(*,*)K,X,EQA

 IF(K==0)EXIT

 L = L - 1

 D = X**L

 DO LL = 1, L-1

 D = D + A(I,LL)*(X**(LL-1))

 ENDDO

 B(I+1,L) = B(I,L+1) + X

 DO LL = L-1, 1, -1

 B(I+1,LL) = B(I,LL+1) + B(I+1,LL+1)*X

 ENDDO

 IF(I==N-1)THEN

 X = -B(I+1,L)

 K = 0

 EQA = X + B(I+1,L)

 GOTO 10

 ENDIF

 ENDDO

The output results of this equation are the following:

�

�

�

& � 23, � � 1.999999999999998, <=> � 31.807620719773695< 3 011& � 62, � � 31.000000000000001, <=> � 31.942623839568114< 3 011& � 43, � � 312.000000000000000, <=> � 1.455191522836685< 3 011& � 8233, � � 3.999999999999392, <=> � 1.983835318242200< 3 011& � 8532, � � 5.000000000000021, <=> � 31.999467258428922< 3 011& � 0, � � 329.999999999979420, <=> � 0
%

4. Complex Roots

Indeed, that there are be infinite equations that have no

real roots; the complex solutions in this case represent the

roots of such equations. As examples of these equations 	��� � -.4��� ! 2 � 0, 	��� � 56 � 1 � 0, 	��� � �� �1 � 0 and so on. The proposed algorithm is also available

to solve these equations of complex roots. We have then to

declare the equation 	��� or AB��� , the roots � , the

coefficients of the Runge-Kutta method and �� as complex

variables, and the method is available for matrix equations

or polynomial equations. The resolution of the equation 	��� � 56 � 7 � 0 in the FORTRAN code can be listing

by the algorithm:

 K = 0

 X = 0.

 DT = (0.001,0.001)

 CONV = 0.00000000001

 DO

 K = K + 1

 K1 = DT*(7. + EXP(X))

 K2 = DT*(7. + EXP(X+0.5*K1))

 K3 = DT*(7. + EXP(X+0.5*K2))

 K4 = DT*(7. + EXP(X+K3))

 X = X + (K1+2.*K2+2.*K3+K4)/6.

 EQAC = 7. + EXP(X)

IF(ABS(REAL(EQAC))<CONV.AND.ABS(IMAG(EQAC

))<CONV)EXIT

 ENDDO

 WRITE(6,*)K,X,EQAC

The obtained results are: & � 4148 � � 1.945910149053894 � 03.141592653591149 <=> � 9.936940159605001< 3 012 � 0 39.486664654775595< 3 012

5. Numerical Examples

• Example 1

The first example extend and illustrates the variations of

the matrix algebraic equation A����� � �� 3 > � 0 and its

roots, such that � represent the square-roots matrices of the

matrix > . The matrix > is a �5 ^ 5� such that all the

elements of this matrix ��J � 2. The figure 1, Shows the

converged variations of the elements of the matrix

polynomial equations A���� and A���� and their roots

elements versus the iterations numbers. The Table 1, offers

the final converged results of A���� and A���� and their

roots elements and the numbers of iterations needed for the

convergence.

Figure 1. The equations and roots variations vs. iterations (Example 1)

 Applied and Computational Mathematics 2014; 3(3): 68-74 73

• Example 2

In this example we show illustratively and numerically

the results of the resolution of the matrix polynomial

equation:

A]���� � �] � N]� � N �� � N��� � N�� � N� � 0

Such that all the composed matrices of this equation are �5 ^ 5� and, the constant matrices elements are given by:

C]�J � 9, C �J � 3515, C��J � 311925, C��J� 443250, C��J � 32835000

Figure 2, shows the curves of the variations of the initial

polynomial equation A]���, and the derived polynomials

equations elements, versus the numbers of iterations needed

for the convergence; though, Figure 3, illustrates the

variations of the roots elements. The Table 1, shows the

final converged results.

Figure 2. The variations of the polynomial matrix equation and the

equations derived (Example 2)

Figure 3. The variations of the polynomial matrix roots (Example 2)

• Example 3

In this example, we resolve the elementary scalar

equation 	���� � 5 3 56-.4��� � 0. Figure 4 and Table 1,

show and illustrate the results.

Figure 4. The variations of the equation and its root vs. iteration

(Example 3)

• Example 4

We are occupied in this example to solve the scalar

equation 	���� � -.4��� 3 ����� � 0 . The variations of 	��� and � are shown by Figure 5. Although, the final

converged results are given by Table 1.

Figure 5. The variations of the equation and its root vs. iteration

(Example 4)

Table 1. The converged final results of the Examples 1, 2, 3 and 4

Equations Roots
Iteratio

ns

A��

A��

-
1.00608410491531

7E-012

���J
6.32455532033516

8E-001
911

A��
1.00186525742174

1E-012
���J

-
6.32455532032520

0E-001

5407

A]�

A]�
1.86264514923095

7E-008
���J

-
8.99999999999999

8

48

A �
1.74622982740402

2E-009
���J

-
12.0000000000000

00

100

A��
4.54747350886464

1E-013
���J 1.99999999999993

2
492

A��
1.00897068477934

2E-012
� �J

3.00000000000003

0
3122

A�� 0 �]�J 7.00000000000003

6
0

	�
9.50439726921104

0E-012
�

4.75542662925566
0

1687

	�
9.91978119655248

5E-013
�

1.30296400121544

0
3262

74 Tahar Latreche: A numerical Algorithm for the Resolution of Scalar and Matrix Algebraic Equations Using Runge-Kutta Method

6. Results and Discussion

Indeed, that the results (the roots) of the examples taken

of the different algebraic equations are much converged to

the exact solutions. As it is shown by the different Figures

and the Table 1, the convergence of the elementary

functions equations or polynomials can be exceeds in

general 1 10�_⁄ , and their roots precision reach the order of 1 10� ⁄ . As it is shown by Figure 1, and clear by Table 1,

that the convergence of the equation approaches to 1 10��⁄

and the sum of its total iteration number approaches to 6500 such that its two roots represent the square-roots of

the matrix >, and the second root can be simply deducted

without iterations, using the algorithm and the Fortran

listing instructions of section 3. The matrix polynomial

equation of degree 5 of the example 2, its convergence

alternates from 1 10`⁄ to 1 10��⁄ and its total iteration

number doesn’t exceed 4000 . Although, the elementary

functions equations of examples 3 and 4, their convergence

precision exceeds 1 10��⁄ with a number of iterations less

than 3500. According to the step �� adopted, the number

of iterations doesn’t exceed 10000 , which can take a

fraction of a second for the resolution. Moreover, the

experience of this algorithm, can allow us to conclude that,

when �� increases, the number of iterations decreases

considerably. Also, when we would get good precision, we

would of course decrease the tolerance of convergence, and

this operation doesn’t in fact, increase the number of

iterations greatly. Although, when the tolerance of

convergence decreasing, for the reason to get good

precision, we have to take in our account probably that this

change leads to decrease the step ��. As it is presented by

Table 1, for the polynomials, the numbers of iterations

increase considerably from the first equation (the original

equation given) to the last equation deducted.

7. Conclusion

As we have indicated that the Runge-Kutta method is a

good and precise method for the resolution of ordinary

differential equations, and the remark that for constant

equations coefficients, the iterative procedure of this

method leads to these algebraic equations roots. Although,

in the absent of precise algorithms to resolve every real or

complex elementary functions or polynomial algebraic

equations, the algorithm presented can resolve any

algebraic equation with good precision that can regulated as

we need such is demonstrated by the arbitrary examples

presented (for all the examples presented, the tolerance of

convergence at least , 1 10`⁄). The presented algorithm

and the method presented in section 3, allow us to

determine all the roots of any matrix or scalar polynomial

equation like the scalar polynomials of the Eigen-values

and the matrix equations of the Eigen-vectors. The

algorithm presented too, is very simple for programming as

presented in sections 2, 3 and 4 and some instructions lines

can resolve any simple or complex equation. Moreover,

with a personnel computer, any complex equation can be

resolved with good precision and as possible, with a small

number of iterations. As shown by the Figures presented,

that the algorithm automatically refines its roots

contributions considerably as possible only and, according

to that the exact equation solution is considerably close,

and according to the step �� and the convergence number

adopted, the feature that make it very precise and economic

algorithm as well in the time of solving and in the iterations

numbers. Probably that the algorithm proposed as extended,

needs some experience about the step �� and the tolerance

of the convergence; but presents indeed, a new accurate

numerical technique for solving any scalar or matrix

algebraic equation with good precision and good execution

speed, and the method proposed in section 3, for deducting

all the remaining roots of polynomials, when the preceding

are computed, is in fact a new idea and a new proposal for

solving polynomial equations.

As a future development using this algorithm, we will

start solving the problem of proper-frequencies (the Eigen-

values) and the mode-shapes (the Eigen-vectors) for the

semi-explicit solving of the dynamic equilibrium equation

of structures subjected to dynamic arbitrary loading. The

algorithm too, can be used to solve the two degree Riccati

matrix algebraic equation for the optimal control of

dynamic systems.

References

[1] Bird, J., (2010). Higher Engineering Mathematics. Sixth
Edition, Elsevier, Ltd.

[2] Ciarlet, P. G., and Lions, J. L., (2000). Handbook of
Numerical Analysis. Vol. 7. First Edition, Elsevier Science.

[3] Kiusalaas, J., (2005). Numerical Methods in Engineering
with Python. First Edition, Cambridge University Press.

[4] Polyanin, A. D. and Manzhrov, A. V., (2007). Handbook of
Mathematics for Engineers and Scientists. First Edition,
Taylor and Francis Group, LLC.

[5] Press, W. H. et al., (2007). Numerical Recipes. Third Edition,
Cambridge University Press.

[6] Press, W. H. et al., (1997). Numerical Recipes in Fortran 77.
Second Edition, Cambridge University Press.

[7] Press, W. H. et al., (1997). Numerical Recipes in Fortran 90.
Second Edition, Cambridge University Press.

[8] Riley, K. F. et al., (2006). Mathematical Methods for
Physics and Engineering. Third Edition, Cambridge
University Press.

[9] Soyeur, A. et al., (2011). Cours de Mathématiques.
http://www.les-mathematiques.net

[10] Yang, W. Y., et al., (2005). Applied Numerical Methods
using Matlab. First Edition, John-Wiley and Sons, Inc.

