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Abstract: In an attempt of accumulating more experiences of interpolating scattered data using the minimum length 

method, this study chooses new kernel functions from the machine learning technique to implementing this minimum length 

method. But, consulting with the regularization theory, a regularized minimum length method is created by solving 

coefficient of it in a penalized least squares approximation problem. The purpose of creating this regularized minimum length 

method is responding to a pilot observation finding the instability of original minimum length method under dense 

interpolation points. Testing the regularized minimum length method finds that applying it is time-saving but its performance 

is comparable to the radial point interpolation with polynomial reproduction. Inverse multiquadric and rational quadric kernel 

functions are two preferred kernel function to perform the regularized minimum length method. In conclusion, the proposed 

regularized minimum length method can be a useful scattered data interpolation method. 
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1. Introduction 

Many methods such as the radial point interpolation with 

polynomial reproduction [1] and moving least squares 

approximation are available for interpolating a function 

over scattered points. But, it is still interested in searching 

more time-saving alternatives but still obtaining sufficiently 

accurate interpolation results. The minimum length method 

[2] may be an example of such alternatives. Originally, it is 

a computational technique for solving underdetermined 

inverse problems. For example, Liu, et al. [3] applied this 

minimum length method to construct geostatistical 

reduced-order model. Kamm [4] applied the minimum 

length method to the inversion of electromagnetic and 

potential field data. But, the minimum length method had 

been used to scattered data interpolation [5]. In this 

literature [5], an interpolation formula is derived by 

minimizing the squared sum of its coefficients. In addition, 

solving these coefficients inverts some matrices once. Since 

inverting some matrices twice is required in implementing 

the radial point method with polynomial reproduction, the 

minimum length method is consequently computationally 

cheaper. Unfortunately, no further studies were devoted to 

evaluate the minimum length method in scattered data 

interpolation; therefore, experiences of such as available 

choices of kernel functions and the stability of minimum 

length method were not discussed. 

In order to accumulate more experiences of using the 

minimum length method as a scattered data interpolation 

method, this study implements it using new kernel function, 

which come from the machine learning technique [6-8]. In 

addition, responding to a pilot observation finding the 

instability of original minimum length method under dense 

interpolation points, a regularized minimum length method 

is created by solving coefficients of it through a penalized 

least squares approximation problem [9]. Preferred kernel 

functions and how to set required parameters for applying 

the regularized minimum length method are then searched 

through two interpolation experiments. 

2. Regularized Minimum Length 

Method 

Suppose x and y are spatial coordinates and a function 

u(x, y) to be interpolated using M scattered interpolation 

points (x1, y1), (x2, y2)… (xM, yM). To estimate u(x, y) at an 

interested point (xQ, yQ), a local support domain ΩQ is 

chosen around this point. If N interpolation points locate 
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within this ΩQ, this study approximates u(x, y) over the ΩQ 

by 
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where ai (i = 1, 2,…N) and bj (j = 1, 2,…m) are coefficients 

to determined, Bi(x, y) (i = 1, 2,…, N) is called as the 

kernel function in this study, p1(x, y), p2(x, y),…, pm(x, y) 

denote a complete monomial basis of m terms, B
T
 = [B1(x, 

y), B2(x, y),…, BN(x, y)], a = [a1, a2,…, aN]
T
, b = [b1, 

b2…bm]
T
, and P

T
 = [1, x, y,…, pm(x,y)]. To solve unknown 

coefficients in (1), this equation is computed at each 

interpolation point within the ΩQ. Accounting for the 

possible interpolation errors, interpolation results are 

expressed by 

δδδδ++= bPaBU 00                 (2) 

where U = [u(x1,y1), u(x2,y2),…, u(xM, yM)]
T
, (x1,y1), 

(x2,y2),…, (xN, yN) denote those interpolation points within 

the ΩQ of point (xQ,yQ), δ = [δ1, δ2,…, δN]
T
, δi (i = 1, 2…N) 

is the interpolation error at the point (xi, yi) and 
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Nevertheless, (2) is underdetermined, since this equation 

contains (2N + m) unknowns ai (i = 1, 2…N), bj (j = 1, 

2….m), and δi but only N equations are available for 

solving these unknowns. To uniquely solve ai, bj, and δi, a 

penalized least squares approximation problem is defined: 

Consulting with the regularization theory (see, e.g. [10-11]), 

the goal is finding those ai, bj, and δi, values to mimimize 

the following Lagrangian functional Π: 

Π = ���������

�
+ 
���

�
+ λ
�U − B�a − P�b − δ�     (5) 

where γ is an error parameter for controlling interpolation 

errors, λT = [λ1, λ2…λN], and λi is the Lagrangian multiplier. 

In (5), the term (aTa + bTb)/2 controls the smoothing of (1); 

whereas, the final term λT(U - B0a - P0b - δ) imposes 

constraints. Meanwhile, γδTδ/2 denotes a regularization term. 

(see, e.g. [10-11]) It measures the closeness to the data of u(x, 

y). If a large γ is adopted, increased the pointwise accuracy is 

expected. The other reason why the regularization term 

γδTδ/2 is added is responding to a pilot observation finding 

the instability of original minimum length method under 

dense interpolation points. At such a situation, the 

collocation matrix B0 is ill-conditioned, since one row of the 

matrix of B0 differ slightly from the other row. 

The adoption of regularization terms was also seen in 

applying such as the least squares support vector machine 

technique [12], neutral networks [13], and Bayesian methods 

[14]. The uses of regularization terms include the 

improvement of overprediction phenomenon [12], 

performance of neutral networks [13], and stability of 

interpolation results [14]. 

Next, computing the derivatives of Π with respect to 

unknowns a, b, e, and λ yields 
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Substituting (6a), (6b), and (6d) into (6c), we can obtain 

λ as follow: 
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where I is an identity matrix. In (7), a term I/γ exists due to 

the adding of term γδTδ/2 in (5). Since (7) contains the term 

I/γ, we can ensure that matrix λ is invertible. Meanwhile, 

substituting (7) into (6a), (6b), and (6d) results in 
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Further substituting (8a)… (8c) into (1) yields 

1
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Since inverting some matrices once is required in 

computing (9), this equation is still computationally 

cheaper than the radial point interpolation method with 

polynomial reproduction [1]. Moreover, derivatives of (9) 

is computed by 
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3. Interpolation Experiment I 

Consider an interpolation experiment [15] in which the 

following function is to be interpolated: 

]10,0[]10,0[)y,x(

 5.1)cos()(sin)y,x(u
10

y2

10
x2

×∈

+= ππ
        (11) 

The main goal of interpolating (11) and its derivative is 

preliminarily searching preferred kernel functions to 

compute (9), (10a), and (10b). Using these preferred kernel 

functions, it is desired that the performance of these 

equations is comparable to the radial point interpolation 

method with polynomial reproduction (See Ref. [15] for the 

details of. this radial point interpolation method with 

polynomial reproduction). 

Unless otherwise stated, follow the next seven steps to 

determine the required data in interpolating (11) and its 

derivatives: 

(1) Approximate u(x, y) and its derivatives at 100 

interested points. Coordinates of these points are (x, 

y) = [0.4 + (i-1), 0.4 + (j-1)] (i, j = 1, 2…10). At 

each interested point, choose a circle local support 

domain Ω centered at this point. Set the radius ρ of 

each Ω equal to 3.5. 

(2) Create 6×6 (M = 36) to 21×21 (M = 441) equally 

spaced interpolation points over the region (x, y) ∈ 

[0, 10] × [0, 10]. In other words, if h is the spacing 

of any two connecting interpolation points, it will be 

between 2.0 and 0.5. 

(3) Adopt a complete monomial basis of one term; i.e. 

m = 1 or P
T
 = [1]. 

(4) Choose five kernel functions from the machine 

learning technique [6-8] to be Bi(x, y) (i = 1, 2…N). 

Table 1 lists these 5 kernel functions in which σ, q, 

and c are shape parameters and r is the Euclidean 

distance between two points. 

Table 1. Kernel functions for the current study 

Name Expression 
Shape 

parameters 

Rational quadric σ/(r2 + σ) σ 

Spherical 1-3r/2σ+0.5(r/σ)3 σ 

Inverse multiquadric (r2+σ2)-q σ, q 

Circular 2cos-1(-r/σ)/π-2r(1-(r/σ)2)1/2/(πσ) σ 

Generalized T-student 1/(1+rc) c 

(5) Set γ = 0 in searching the proper values of shape 

parameters σ, q, and c. Investigate subsequently 

variation of interpolation errors with respect to 

nonzero γ values; therefore, the proper γ value can 

be determined. 

(6) Perform the radial point interpolation method with 

polynomial reproduction using the multiquadric 

radial basis function, R = [r
2
 + (αcdc)

2
]

q
  in which 

αc and q are shape functions, and dc is the 

characteristic length or averaged nodal spacing. Set 

αc = 1.0, q = 1.03, and dc = 3.5 [11]. 

(7) Quantify the accuracy of interpolation results using 

the following averaged interpolation errors ξ, ζ, and 

ε: 
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where the superscript exact notes the exact results, the 

superscript num notes the numerical results, and the 

subscript i denotes the i-th interested point. 

3.1. Searching Preferred Kernel Functions 

Adopt M = 121, γ = 0, and ρ = 3.5 or 2.5. Figs. 1(a)...1(f) 

show variation of averaged interpolation ξ with respect to 

different types of kernel functions and their shape 

parameters. In plotting these six figures, the range of shape 

parameters is determined by inspecting corresponding 

interpolation errors. This inspection continues until 

obtaining less interpolation errors is impossible. 

Among five kernel functions in Table 1, Figs. 1(a)…1(f) 

indicate that the inverse multiquadric, rational quadric, and 

circular kernel functions may be three preferred kernel 

functions. If these three types of kernel functions are used, 

obtaining less interpolation errors is expected. For example, 

if we use ρ = 3.5, σ = 40, and the rational quadric kernel 

function to compute (9), Fig. 1(a) indicates that the 

interpolation error ξ is less than 0.02. 

In addition, Figs. 1(a)…1(f) demonstrate that decreasing 

the radius ρ may give more proper values of shape 

parameters. For example, if we use the spherical kernel 

function to compute (9), changing the ρ value from 3.5 to 

2.5 permits the use of σ = 1.0 without obtaining 

unsatisfactory ξ values. Consequently, ξ(ρ = 2.5 and σ = 

1.0) ≈ 0.025 and ξ(ρ = 2.5 and σ = 1.0) ≈ 0.09 are obtained 

in plotting Fig. 1(b).The latter ξ value is unsatisfactory. 

3.2. Comparison of Interpolation Results  

Apply simultaneously (9), (10a), (10b), and the radial 

point interpolation method with polynomial reproduction to 

interpolate u(x, y) and compare interpolation errors next. 

Since Figs. 1(a)…1(f) show that less interpolation errors are 
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obtained using the rational quadric, circular, and inverse 

multiquadric kernel functions, these three types of kernel 

functions are used in this section.  

 

Figure 1. Search of preferred kernel functions to compute (9), (10a), and (10b) (M = 121, γ = 0) 

Set γ = 0 and select values of shape parameters from Figs. 

1(a), 1(c), 1(d), and 1(e). Figs. 2(a)…2(c) compare variation 

of interpolation errors ξ with respect to different h values 

and kernel functions in which RPIM denotes the radial point 

interpolation method with polynomial reproduction. The 

chosen values of shape parameters are listed inside these 

figures. 

Observing Figs. 2(a)…2(b) can easily find the 

interpolation errors ξ approach uncontrollably in the range 

0.5 ≤ h < 1. These two figures confirm the aforementioned 

pilot observation finding the instability of original minimum 

length method under dense interpolation points. In an 

attempt of improving these uncontrollable interpolation 

errors, three methods are found: 

(1) Adopt multiple ρ values. For example, we can use ρ 

= 2.5 in the range 0.5 ≤ h < 1 and ρ = 3.5 for other h 

values. 

(2) Use special kernel function to be Bi(x, y) (i = 1, 

2…N). Fig. 2(c) is an example. Even if γ = 0 is set, 

this figure demonstrates that the circular kernel 

function doesn’t cause the instability of (9) in the 

range 0.5 ≤ h < 1. Consequently, interpolation errors 

ξ approach limitedly in Fig. 2(c). However, it should 

be simultaneously noted that (9) interpolates u(x, y) 

less accurately when the circular kernel function 

serves as Bi(x, y). 

(3) Use nonzero γ values. Figs. 3(a)…3(b) illustrate two 

example. Creating these two figures modifies Figs. 

2(a)…2(b) with setting γ = 10
12

. Observing Figs. 

3(a)…3(b) can find that γ = 10
12

 stabilize (9) in the 

range 0.5 ≤ h < 1. Interpolation errors ξ approach 

limitedly in Figs. 3(a)…3(b). Fig. 3(b) even indicates 

that such nonzero γ values decrease ξ(h = 0.5) values. 

 

Figure 2. Variation of interpolation errors ξ with respect to different h values, three types of kernel functions, and γ = 0 (ρ = 3.5) 

Meanwhile, modifying Fig. 2(c) to create Fig. 3(c) with setting γ = 10
12

 is still completed, although this modification 
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may be unnecessary. Comparing Figs. 3(c) and 2(c) finds 

that γ = 10
12

 affects ξ values slightly. Further studies of 

effects of nonzero γ values on interpolation errors are 

presented in the next section. 

Next, use those kernel functions and required data to 

create Figs. 3(a)…3(c). Figs. 4(a)…4(f) compare variation 

of averaged interpolation errors ζ and ε with respect to 

different h values and kernel functions. 

Inspecting Figs. 4(a)…4(f) finds that Figs. 4(c) and 4(f) 

are the most unsatisfactory. If the circular kernel function is 

used to calculate ζ and ε values, Figs. 4(c) and 4(f) indicate 

that they improve unsatisfactorily in the range 0.5≤ h < 1. In 

contrast, using inverse multiquadric and rational quadric 

kernel functions doesn’t result in similar phenomena. 

Conclusively, inverse multiquadric and rational quadric 

kernel functions denote final two preferred kernel functions 

for computing (9), (10a), and (10b). 

Table 2. CPU time spent to compute (9) and implement the radial point 

interpolation with polynomial reproduction (M = 441, γ = 1012)* 

Method CPU time (second) 

(9) 0.25 

Implementation of the radial point 

interpolation method 
3.58 

*On a MacPro computer 

Moreover, Table 2 compares the CPU time spent to 

interpolate u(x, y) using (9) and the radial point interpolation 

method with polynomial reproduction. Editing this table 

adopts the inverse multiquadric kernel function to be Bi(x, y) 

(i = 1, 2…N) and consider M = 441, ρ = 3.5, and γ = 10
12

. 

Inspecting this table can easily see that computing (9) is 

more time-saving than implementing the radial point 

interpolation with polynomial reproduction. This result is 

easily expected, since computing (9) inverts some matrices 

only once. 

 

Figure 3. Inspection of the usefulness of nonzero γ values (γ = 1012) 

 

Figure 4. Variation of interpolation errors of derivatives of (11) with respect to different h values and three types of kernel functions (γ = 1012) 
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4. Interpolation Experiment II 

Suppose the function to be interpolated is changed to a 

Franke function: 
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The main goal of interpolating (13) and its derivatives is 

studying the effects of nonzero γ values on interpolation 

errors. In addition, averaged interpolation errors with respect 

to randomly distributed interpolation points is inspected. 

Similar to Sec. 3, referenced interpolation results are created 

using the radial point interpolation method with polynomial 

reproduction. 

Unless otherwise stated, follow the next 6 steps to set 

required data in interpolating (13) and its derivatives: 

(1) Estimate u(x, y) and its derivatives at 100 interested 

points. Coordinates of them are still (x, y) = [0.4 + 

(i-1), 0.4 + (j-1)] (i, j = 1, 2…10). At each interested 

point, choose a circle Ω centered at this point and set 

ρ = 3.5. 

(2) Create 6×6 (M = 36) to 21×21 (M = 441) equally 

spaced interpolation points over the region (x, y) ∈ 

[0, 10] × [0, 10]. 

(3) Adopt a complete monomial basis of one term; i.e. 

m = 1 or P
T
 = [1]. 

(4) Use the inverse multiquadric and rational quadric 

kernel functions to be Bi(x, y) (i = 1, 2…N). Values 

of shape parameters are chosen from Figs. 

1(a)…1(f). Besides, γ = 10
12

 is considered. 

(5) Implement the radial point interpolation method 

with polynomial reproduction using the multiquadric 

radial basis function and set αc = 1.0, q = 1.03, dc = 

3.5. 

(6) Quantify the interpolation errors by averaged 

interpolation errors ξ, ζ, and ε. 

As a check of the performance of (9), (10a), and (10b), 

Figs. 5(a)…5(f) compare variation of interpolation errors 

with respect to different h values and two types of kernel 

functions. 

Fig. 5(a)…5(f) ensures that (9), (10a), and (10b) are 

better applied using the inverse multiquadric and rational 

quadric kernel functions. In these six figures, (9), (10a), 

(10b) and the radial point interpolation method with 

polynomial reproduction interpolate (13) and its derivatives 

similarly accurately. At dense interpolation points (h = 0.5), 

Fig. 5(d) even indicates that (9), (10a), and (10b) 

interpolate u(x, y) more accurately. 

Figs. 6(a)…6(c) depict variation of interpolation errors 

of u(x, y) with respect to coordinates x, y, and different γ 

values. Plotting these three figures adopts the rational 

quadratic kernel function, M = 441, and σ = 10.0. 

Comparing Figs. 6(a)…6(c) finds that a large γ value can 

smooth interpolation errors generated using (9), (10a), and 

(10b). When the γ value increases from 10
10

 to 10
12

, these 

three figures indicate that interpolation errors decrease 

away from the point (0.4, 0.4). In addition, Figs. 6(a)…6(c) 

show that the interpolation error maximize at the point (0.4, 

0.4).  

 

Figure 5. Variation of interpolation errors of (13) and its derivatives with respect to different h values and two types of kernel functions (γ = 1012) 
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Figure 6. Effects of nonzero γ values on interpolation errors (Using the rational quadric kernel function, M = 441, σ = 10) 

 

Figure 7. Randomly distributed interpolation points for estimating (13) 

and its derivatives 

Table 3. Comparison of interpolation errors with respect to randomly 

located interpolation points shown in Fig. 7 (M = 441, γ = 1012)* 

Averaged 

interpolation 

error 

(9), (10a), and 

(10b) 

Radial point interpolation 

method with polynomial 

reproduction 

ξ 0.0001468 0.0006456 

ζ 0.05822 0.05597 

ε 0.055021 0.05333 

Next, variation of averaged interpolation errors, ξ, ζ, and 

ε under randomly distributed interpolation points are 

studied. Choose the case of M = 441 and add a 

two-dimensional Halton sequence to coordinates of 

interpolation points. Fig. 7 shows the new positions of 

interpolation points. Adopt these new positions of 

interpolation points to re-calculate ξ, ζ, and ε values. Table 

3 lists the results of them. Editing this table uses the 

rational quadric kernel function, σ = 10.0, and γ = 10
12

. 

Table 3 indicates that (9) interpolates u(x, y) more 

accurately but (10a) and (10b) interpolate its derivatives 

slightly inaccurately. But, considering that computing (9), 

(10a), and (10b) is time-saving, such ζ and ε values may be 

acceptable. 

5. Conclusion 

This study implements the minimum length method 

using new kernel functions, which come from the machine 

learning technique. In addition, a regularized minimum 

length method is created by considering the implementation 

of it as a penalized least squares approximation problem; 

therefore, an error parameter is needed in interpolating a 

function. In the previous two sections, two interpolation 

experiments have competed to study variation of 

interpolation errors with respect to different required data. 

From these interpolation experiments, it is drawn:  

(1) The performance of regularized minimum length 

method is comparable to the radial point 

interpolation method with polynomial reproduction. 

However, interpolating a function and its derivatives 

using this alternative scattered data interpolation 

method is time-saving. 
(2) Inverse multiquadric and rational quadric kernel 

functions are two preferred kernel functions to 

implement the regularized minimum length method. 

Using these two types of kernel functions, obtaining 

sufficiently accurate interpolation results is 

expected. 
(3) A large error parameter is effective in improving the 

instability of original minimum length method. It 

can smooth interpolation errors at some points. 

In conclusion, the proposed regularized minimum length 

method can be a useful scattered data interpolation method. 

Nomenclature 

B0 = Collocation matrix. 

B = Kernel function. 

I = Identity matrix. 

M = Total number of interpolation points. 

N = Total number of points within a local support 

domain. 

R = Radial basis function. 

a, b = Unknown coefficients of the interpolation formula. 

c = Shape parameter. 

dc = Characteristic length or averaged nodal spacing. 

exact = Exact solutions. 

h = Spacing between any two connecting interpolation 

points. 

m = Total number of terms of a complete monomial 

basis. 

num = Numerical solutions. 

p = A complete monomial basis. 

q = Shape parameter. 

r = Euclidean distance between two points. 
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u = Function to be approximated. 

x, y = Spatial coordinates. 

Ω = Local support domain. 

Π = Lagrangian functional. 

αc = Shape parameter. 

ε = Averaged interpolation errors of the function 

derivative with respect to the y coordinate. 

δ = Interpolation error. 

γ = Error parameter for controlling interpolation errors. 

λ = Lagrangian multiplier. 

σ = Shape parameter. 

ξ = Averaged interpolation errors of function values. 

ζ = Averaged interpolation errors of the function 

derivative with respect to the x coordinate. 
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