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Abstract: Unsteady, two dimensional boundary layer flows over a heated surface of power-law fluids are investigated. 

Surface temperature is assumed to have o power-law variation with the time and the distance. Similarity transformation is 

applied to the partial differential equation system with three independent variables is reduced into an ordinary differential 

equations systems. Numerical solutions of non-linear differential equations are found by using a finite difference scheme. 

Solutions are obtained for boundary layer flow velocity and thermal boundary layer profile. Effects of flow behavior index, 

Prandtl number, suction-injection parameter and surface temperature exponent with the time and the distance are outlined in 

the figures. 
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1. Introduction 

The flow of boundary layer for non-Newtonian fluids over 

a moving surface has import engineering applications, for 

example metal or plastic extrusion, lubrication and heat 

exchangers etc. Yürüsoy [1] studied the similarity solution of 

a boundary layer on a stretched surface for a Power-Law 

fluid. By using a special similarity transformation, which was 

used also in this paper, he reduces the unsteady boundary 

layer equations to a non-linear ordinary differential equation 

system. Yürüsoy and Pakdemirli [2] treated the symmetry 

reductions of unsteady three dimensional boundary layer 

equations of non-Newtonian fluids by using Lie Group 

analysis. Acrivos et al.[3] examined the flow past a 

horizontal flat plate including heat transfer without 

dispersion term in the energy equation. Schowalter [4] 

investigated two and three dimensional boundary layer 

equation of power-law fluids. Chen [5] treated effect of 

suction-injection and magnetic field on convection heat 

transfer of power-law fluid over a stretching sheet. Ece [6] 

investigated free convection to power-law fluids from a 

vertical cone of variable surface temperature. Luna et al. [7] 

analyzed the case of conjugated heat transfer in circular ducts 

for a power-law fluid. Hassanien [8] considered the heat 

transfer in power-law fluid over a non-isothermal stretching 

sheet.  

In recent years, Lamsaadi [9] investigated natural 

convection heat transfer in shallow horizontal rectangular 

enclosures uniformly heated from the side and filled with 

non-Newtonian power-law fluids. Mahmood et al. [10] 

investigated flow and heat transfer over a permeable sensor 

surface placed in a squeezing channel. Abel et al. [11,12] 

studied the flow of a power-law fluid due to a linearly 

stretching sheet and heat transfer characteristics using 

variable thermal conductivity in the presence of a non-

uniform heat source/sink. They also considered the effects of 

thermal buoyancy and variable thermal conductivity on the 

MHD flow past a vertical stretching sheet. 

In this paper, two-dimensional, unsteady boundary layer 

flow over a moving surface with suction or injection is 

analyzed. The problem of convection heat transfer to power-

law fluid from a horizontal heated plate whose surface 

temperature has a power-law variation with the distance and 

the time is investigated in this study. Variable surface 

temperature have attracted many industrial applications may 

be represented by a suitable choice of power exponent. 

Momentum and energy equations are obtained and cast into 

non-dimensional form. By using a special similarity 

transformation [1], we reduce the unsteady boundary layer 

equations to a non-linear ordinary differential equation 

system. The ordinary differential equations are solved 

numerically by using a finite difference scheme. Effects of 
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similarity solutions for the boundary layer velocity and 

thermal boundary layer profile and to obtain the effects of 

suction or injection parameter, flow behavior index, Prandtl 

number, and surface temperature exponent on heat flux are 

discussed. 

2. Governing Equations 

In this section, the problem of unsteady laminar boundary 

layer flow of a power-law fluid with thermophysical 

properties over a moving surface, with suction or withdrawal 

and blowing is treaded. The stress constitutive and heat flux 

equation for power-law fluids is expressed as [13] 
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Here τij are dimensional shear stress, eij is strain rate, δij is 

Kronecker delta, q is dimensional heat flux, I2 is second 

invariant of strain-rate tensor, K is fluid consistency index, 

K1 is thermal conductivity, T is the temperature, p is pressure, 

n and m are superscripts the non-Newtonian behavior in the 

flow and heat transfer, respectively. 

A stream function is defined according to 
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Here x and y are coordinates measuring distance along the 

plate and normal to it, respectively with u and v he velocity 

components in x and y coordinates. A tedious straightforward 

algebras yields the unsteady non-dimensional momentum 

and energy equations 
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which are subject to following boundary conditions: 
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where t is time. S(x,t) is surface temperature function, U(x,t) 

is the moving surface velocity, V(x,t) is the suction or 

withdrawal and blowing velocity of the porous surface. 

The non-dimensional parameters are related to their 

dimensional ones through the following relations: 
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r00

1

m1m1

0

nn2

0

r

00

0

1n
11n

1m

1n
1

1n
1

                                (7) 

Here Pr is modified Prandtl number, Re is generalized 

Reynold number, L an U0 length of horizontal surface, 

average velocity, respectively. ρ is density of the fluid. T is 

temperature, Tr is the any reference temperature and T∞ is the 

ambient temperature (Tw> T∞).  

Similarity variables for equations (4), (5) and (6) are 

introduced as 
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ξ=yx t , ψ=x t R(ξ), T=x t L(ξ),

U=λx t , V=γa x t , S=x t
              (8) 

where a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12 are constant to 

be determined for given values of the Power-Law index n.  

Substituting equation (10) into equations (4) and (5), the 

boundary layer equations take the following forms:  
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Requiring that new equations remain invariant under these 

transformations leads to the conditions 
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                 (11) 

Solution of equations (11) for the constants a1, a2, a3, a4, a5, 

a6, a7, a8, a9, a10, a11, a12 and m yields 
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a5 and a6 are arbitrary constants. Substituting equations (12) 

and (8) into equations (4) and (5) we finally obtain 
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with the boundary conditions of  

0)(L,0)(R,1)0(L,)0(R,)0(R =∞=∞′=λ=′γ−=           (15) 

For this equations, when n=1, the fluid is Newtonian, n<0 

is corresponds to the Pseudo-Plastic fluid, n>0 is corresponds 

to the Dilatant fluid. Equations (13) and (14) define a set of 

coupled second-order non-linear differential equations for R 

and L subject to the boundary conditions (15) were solved 

numerically using finite difference scheme.  

Generalized local Nusselt number is defined as 
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where qw is heat flux. Using definitions given by equation (2) 

and the others parameters it may be shown that 

5 1 6(n-1)+a (a +1) (1-2n)+a (n+1)n
- n-1n+1 n+1 n+1NuRe =-x t R(0) L (0)′     (17) 

By using a special finite difference scheme, equations (13) 

and (14) are integrated subject to the boundary conditions 

(15). 

3. Results and Discussion 

Figure 1 shows temperature profile for generalized Prandtl 

number which were taken in the range from 1 to 100 and the 

values of the parameters were a5=a6=1. a5 and a6 are the 

surface temperature exponents with the distance and the time 

respectively. Temperature magnitude increases with reducing 

generalized Prandtl number. Figure 2 displays the variation 

of temperature for three different values a6. Temperature 

increases with decreases surface temperature exponent with 

the time a6. Variation of temperature is shown for different a5 

values in Figure 3. Increasing surface temperature exponent 

with the distance a5 lowers temperature. In Figure 4, velocity 

profile is plotted for power-law indexes n. The boundary 

layers are qualitatively different for n < 1 (shear thinning 

fluid) and n > 1 (shear thickening fluid) cases. For shear 

thinning fluid (n<1), the velocity increases with increasing n, 

but in the shear thickening (n>1), velocity increases with 

decreasing n in the range of ξ=1 to ξ=5. Figure 5 shows 

effects of suction, injection parameter and no penetration for 

velocity profile. Velocity boundary layer thickness increases 

for injection, and decreases for suction cases are displayed in 

Figure 5. Effects of suction/injection parameters on 

temperature profiles are shown in Figure 6. For suction case, 

thickness of the thermal boundary layer decreases, whereas 

for injection case increases the thickness of the thermal 

boundary layer. Figure 7 and 8 display the variation of 

1n

n

ReNu +
−  for Prandtl number and the surface temperature 

exponent a6 and a5. Figure 7 shows the local Nusselt number 

increases with increasing values of the power-law index n 

and values of Prandtl number. But, the local Nusselt number 

decreases with increasing surface temperature exponent a6. 

Variation of term a5 is shown in Figure 8. The local Nusselt 

number increases with increasing power-law index n for 

values of a5=1 and a5=0 and increases with increasing values 

of Prandtl number, but a reverse effect is observed for a5=-1, 

Pr=10 and Pr=100.  

 

Figure 1. Temperature profiles for a5=a6=1, λ=1, γ=0 and n=0.5 

 

Figure 2. Temperature profiles for a5=1, Pr=10, λ=1, γ=0 and n=0.5 

 

Figure 3. Temperature profiles for a6=1, Pr=10, λ=1, γ=0 and n=0.5 
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Figure 4. Velocity profiles for a5=a6=1, Pr=10,λ=1 and γ=0 

 

Figure 5. Velocity profiles for a5=a6=1, Pr=10 ,λ=1 and n=0.5 

 

Figure 6. Temperature profiles for a5=a6=1, Pr=10, λ=1and n=0.5 

 

Figure 7. Variation of the local Nusselt number profiles for a5=1, λ=1 and 

γ=0 

 

Figure 8. Variation of the local Nusselt number profiles for a6=1, λ=1 and 

γ=0 

4. Conclusions 

Similarity solutions of boundary layer equations for 

convection to non-Newtonian power-law fluid form 

horizontal plate whose temperature have a power-law 

variation with the distance and the time were investigated. 

Magnitude of the temperature profile was found to decrease 

with increasing Prandtl number, a5 and a6. The momentum 

boundary layer thickness increases with increasing n for 

shear thinning fluid (n<1), but in the shear thickening (n>1), 

boundary layer thickness decreases with increasing n beyond 

ξ=1. Flow behavior index n, surface temperature exponents 

a5 and a6 and Prandtl number have profound on local Nusselt 

number.  
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