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Abstract: This paper is concerned with an efficient iterative algorithm to solve general the Sylvester-conjugate matrix
equation of the form >A VB, + iCjWDJ = lEEI\_fFl +C
j=l =1

i=1

The proposed algorithm is an extension to our proposed general

Sylvester-conjugate equation of the form S A V + 3B W= fEIVFI +C When a solution exists for this matrix equation, for any
j=1 1=1

i=1
initial matrices, the solutions can be obtained within finite iterative steps in the absence of round off errors. Some lemmas and
theorems are stated and proved where the iterative solutions are obtained. Finally, a numerical example is given to verify the
effectiveness of the proposed algorithm.

Keywords: General Sylvester-Conjugate matrix Equations, Finite Iterative Algorithm, Orthogonality, Inner Product Space,

Frobenius norm

1. Introduction

We know that matrix equation is one of the topics of very
active research in computational mathematics, and a large
number of papers have presented several methods for solving
several matrix equations [1-5]. Ding and Chen presented the
hierarchical gradient iterative algorithms for general matrix
equations [6, 12] and hierarchical least squares iterative
algorithms for generalized coupled Sylvester matrix
equations and general coupled matrix equations [13, 14]. The
hierarchical gradient iterative algorithms [6, 12] and
hierarchical least squares iterative algorithms [6,14,15] for
solving general (coupled) matrix equations are
innovational and computationally efficient numerical ones
and were proposed based on the hierarchical identification
principle [13,16] which regards the unknown matrix as the
system parameter matrix to be identified.

In [7], the necessary and sufficient conditions for the
solvability of the matrix equation 47 XB =C, over reflexive
and anti-reflexive matrices are given, and the general
expression of the reflexive and anti-reflexive solutions for a

solvable case is obtained. Ramadan et al. [8] introduced a
complete, general and explicit solution to the Yakubovich
matrix equation V-AVF=BW, with F' in an arbitrary form.
Also with the help of the concept of Kronecker map, an
explicit solution for the matrix equation XF —AX =C was
established in [9]. Zhou et al. [10] proposed gradient based
iterative algorithms for solving the general coupled Sylvester
matrix equations with weighted least squares solutions. In
[11], a general parametric solution to a family of generalized
Sylvester matrix equations arising in linear system theory is
presented by using the so-called generalized Sylvester
mapping which has some elegant properties.

In [17], a finite iterative algorithm for solving the
generalized (P.Q)-reflexive solution of the linear systems of
matrix equations was given. Solutions to the so-called
coupled Sylvester-conjugate matrix equations, which include
the generalized Sylvester matrix equation and coupled
Lyapunov matrix equation as special cases are given and
presented by A.G. Wu at el. [18]. In [19], an iterative
algorithm is presented for solving the extended Sylvester-
conjugate matrix equation. Ramadan et. al. proposed a finite
iterative solution to general Sylvester-conjugate matrix
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S t m —_
equation of the form 2 A;V+3>B,;W =3 E, VF, +C in [20].
i=l 1=1

=
This paper is organized as follows: First, in section 2, we
introduce some notations, lemmas and theorems that will be
needed to develop this work. In section 3, we propose
iterative method to obtain numerical solution to the matrix
S t m —
equations XAV +XBW=3EVF+C using iterative
i=l j=l I=1
method. In section 4, a numerical example is given to
explore the simplicity and the neatness of the presented
methods.

2. Preliminaries

The following notations, definitions, lemmas and theorems
will be used to develop the proposed work. We use
AT 4, 4" and #(4) to denote the transpose, conjugate,
conjugate transpose and the trace of a matrix 4 respectively.
We denote the set of all mXn complex

matrices by C " , Re(a) denote the real part of
number & .

Definition 1. Inner product [38]

A real inner product space is a vector space V' over the
real field R together with an inner product. i.e. with a map

() V=V S R
Satisfying the following three axioms for all vectors
x,¥,zUV and all scalars @ UR

1. Symmetry: <x, y> = <y, x>.
2. Linearity in the first argument:

(@, y) = alx,y)

(x+rz)=(xz)+(n2)

3. Positive definiteness: <x, x> >0 forallx 0.

Two vectors u,vOV are said to be orthogonal if (1,v) =0.

The following theorem defines a real inner product on
space C ™" over the field R

Theorem 1. [29]

In the space C ™" over the field R, an inner product can
be defined as

(4,B)=Re[tr(4" B)]. )

Proof.
(1) For A,BL1C ™", according to the properties of
trace of a matrix one has
(4,B) =Re[tr(4" B)]=Re[tr(B" 4)]=Re[tr(B” 4)]
=Re[tr(B" 4)]=(B, 4)

(2) For areal number a, and A, B,C [JC™" one has

(ad, B) = Re[tr((ad)"" B)] = Re[tr(ad™ B)] = Re[atr(4" B)]
=a Re[tr(A" B)]=a(4,B)

(4+ B,C)=Re[tr((4+ B)T C)]=Re[rr(4 + BT )C]
=Re[ (47 C)]+ Re[1r(BY C)]=(4,C) +(B,C)

(3) It is well-known that #(4"4)>0 for all x Z 0 .
Thus, (4, 4) =Re[tr(4" 4)]-0 forallx Z 0.

According to definition 1, all the above argument reveals

that the space C ™" over field R with the inner product

defined by (2) is an inner product space.
Definition2. Frobenius Norm
The matrix norm of 4 induced by the inner product is

Frobenius norm and denoted by 4] | 4|* = (4, 4) =race(a™ 4.

3. Main Results

In this section, we propose an iterative solution to the
complex matrix equation

t —
SAVB,+YCWD,=SEVE+G, (I
i=1 =l 1=1

where A,-,Cj,E,D c mn

G O ¢€ ™7 are given matrices, while V,W O C ™P are
matrices to be determined.
The solution the matrix equation (1) is based on the
following algorithm.
Algorithm I (Finite Iterative Algorithm for (1))
1 Input Ai,Bi,Cj,DjEl,E,G

2 Chosen arbitrary matrices V,, W, 1€ ™7 ;
3 Set

B,D,,F,0 ¢ P*» and

>

R ==G +Zm:E,71F, —ZS:A,-V]B,- _Ztlcijjé
=1

i=1 j=1

S m —H———H
P :ZAI‘HRIB[H _;El REF,

i=1
t

Ql = Z CjHRleH 5
j=l

k=1

1 If R, =0,then stop; and V,,W, are the solution; else
let k:=k+1 gotoSTEPS.

2 Compute
LY
2 2 2

121" +le:d

T Tk
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e IR ol BV v+ OV =mpal B 07 v+ 0 o -mpi=aR)” ()
k+1 2 2 Zk o>
HP’fH +HQ"H Or, equivalently
m - t * *
R =G+ Y EVF = AV, ~2.CMiD; Retrl P 07" = v+ 0ff 07" -y =[R[

= p=
. Where the sequences {V;L{PL{w:}.,{0;]} and {r} are

=R —— HRkH [iA,PB iE}BcE +tZC oD ]; generated by Algorithm I for i =1,2,...
2 i J 2

BRI +lal = T oS
We apply mathematical induction to prove the conclusion
” ” Fori =1, from Algorithm I we have
13/<+1 AHRk+1BH ZE Rk+1F — s L/ —
kI g IN=i>ARE Y E RE Y0/ 1)
= =
t !
=3¢ Ro0) ¢l k*h” 0. WSRO 07
J=l k JA
3 Ika+1=0;thenstop else let k:=k+1 ; goto RH AVB+R EVF+RH CWD
STEP 5. 121: Z ;le
To prove the convergence property of Algorithm I, we first R R
establish the following basic properties -R" Z AV,B. - R, Z EV'F -R Z CW.D,]
Lemma 1 i=1 I=1 =1 ’ ’

Suppose the matrix equation (1) is consistent and let
V',W" be its solution. Then, for any initial matrices  Inviewthat J/" J/ are solutions of the matrix equation
1), it is easy that one can obtain from above relation
V,W, , we have ) Y

B (V" =V)+ QW =W+t R (V" =V)+ Q! (W =W))]

—tr[RHZAVB +R, ZEVF+RHZCWD RHZAVB RS EV

j=1 =1

“11 |

~R"S C WD, ]+ iR ZAVB+RHZEVF IHthjW*D_j—EH

j=1 Jj=1 i

7B,

1

S

—RHZEVF R ZCWD]
Jj=1
R ( ZAVB ic_,W*D/

J=1

"F)-R, (ZAVB +ZCWD ZEVF)

i=1 Jj=1

M§

~
1l
—

— *_ _H N m — —
C, EV'F)-R (ZAM&@QW@;ZEM@)]

i=1 =

M§

+R" (Y 4V B+

i=1

RH(G+ZE Z B,->.CWD)+R (G+ZEVF ZAVB ZCW1

j=1 i=1 Jj=1

D; -

ﬂM

~
1l
LA

~

=tr(R'R)) +tr(R1 Rl) = 2||R1||

This implies that (3) holds for ; =1 . fori = k +1. It follows from Algorithm I that
Assume that (3) holds for; = k . That is,
Then we have to prove that the conclusion  holds

BV =V )+ O W =W+ a PV -V )+0! W -w)1=2|R,|
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o PLV =V)+ oL Wkﬂ)]-tr[(ZAHRMB” ZE R.F, o Rl

z &

L R, .
+(ZCHR/(+1DH+” k1|l o'W =Wl

J J
= &

a * —H N — * *
:tr[Rlﬁlei(V _Vk+1)Bz‘_RkﬂzEl(V _I/k+l)F+RIﬁIZCj(W _Wk+1)Dj]

P) V" =V

Rl RE IR
+i—[tr(P, k ( - 2 k) Qk w - 2 Qk)]
& Rl el Rl +led

=l “12/1(1/ kH)Bl.—RkHZEZ(V -V, F + MZC(W ~W,..)D,]

K+ | k+1 ’ ” ” 2
[z BV =V)+0! W =W )]~ (& +|e]H
IR IR ||P|| +lo’

=tr RH

—H N * e ! *
k+1ZA (V VB —Rk+1ZE,(V V) F +Rlilzcj(W _VVkﬂ)Dj]
1=l j=1

R 1 z ®
K[ [tr(B" (V" =V )+ O W =W =R,

In view that I/~ , W is a solution of matrix equation (1), with this relation and (4) one has

tr[Pli{l (V* - Vk+1) + Qlﬁl(W* - Wk+1)] + tr[Pk[il(V* - Vk+1) + Qlﬁl(W* - Wk+1 )] =

Rl

5 * —H L — * *
:tr[Rlﬁ-lei(V _Vk+1)Bi_Rk+lel(V _Vk+1)F +Rlﬁlzcj(W ~Weu)D,]

o (Rl k”” L (B =V + O W =W )]-2| R

* —H o * — L *
+rr[R,Z12A,-<V ~Vi)B =R D E(V =V, ) F,+R[D C,(W =W,.)D,]
=1 j=1

i=1

flReal oo [tr(B (V" =V )+ O W = W))]

[RJ"

=tr[Rk+l(ZAVB +ZCWD ZEV F - ZAmB ZC WD, +ZEVk+1F)]
i=1 i=1 Jj=1
2

Ll (B (V" =V )+ 0l W -W)) - 2|Re|

IIRk+1

+er,ﬁ1(ZAVB +ZCWD ZEVF ZAVk+1B ZCWk+1D +ZEVk+1F)]

i=1 j=1 i=1 J=1

+or(B (V" =V)+ 0 W =W,))]
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w[R (G + Z EV, .F - Z AV, B, Z CWeuD)1-2|R.|

i=1

+rr[R,fil<G+ZE VerFy =S AViuB, =Y C D)+ SRl QR

B = IR

2
ﬂ(Rm1kﬂ)+ﬂ(Rm1kﬂy+%Rm1'_Amhl
= 2HR/’cH
Hence relation (3) holds by principle of induction. Step 1: We prove that
Lemma 2 "
Suppose that the matrix equation (1) is consistent and the tr(R,,R)=0 @)
sequences {Ri} ,{P,} and {Ql} are generated by Algorithm I
H H _ . —
with any initial matrices V', W, , such that R, # 0 for all and tr(ByF, +0,,0,) =0 for i =12,...k. ()
i=1,2,....k then, First from Algorithm I we have
Re{ trace(R"R)) }=0 5)

m - s t
R, =G+ Z EV, . F — z AViuB; — Z CW.uD,
and Re{trace( PjH P+ Q}H 0, )} =0 for I=1 i=1 =

Lj=12,..,k, i#]. (6)

Proof
We apply mathematical induction

corSaoe B g L,

|2 +lo. |2 +lo.
f R
-2 C W +—"——0)D,
D
—G+ZEVF ZAVB z WD, ” ”” "||||Q 7 G (z PF, - ZAPB ZCQkD)
k k
IS aps S EEE S
=R, ——5———=[> ARB - EPLF +) COD]I ©)
[B]" +e]™ =
For § = 1, it follows from (9) that
r(RYR) =tr((R, - 7 ”” 1|:| ”2 [iAPB ZE PF, +Zc 0D D"R)
_tV(RH _ || 1” 2[ IHZ H ZEHRFH+Q1HZCHRDH])

I +lol

From this last relation one has
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2
tr(RYR) +tr(RIR)) = 2||R1||2 - ”P”” |:|Q ” tr [PHZAH RB"-P ZEHR F + QIHZCHR D]
1 1 Jj=1
|| || H H L __H m —__
- tr[B" Y A CIR, E'RF"
T +lop T > 2.CIRD] RS,

=2|Rr| - ” |||| T R ZA R B! - ZE RE " )+0! Z;CHRDH
=1 J

+P" ZAHR BY - ZE RE™M+0"S CPR D]
=1

i=1

o -—BLipip 1 0r0,+ 7T + 07O

121" +lel
= 2||R ”2 ” 1” —]2 ” ” 2||Q ”2] = 0 This implies that (7) is satisfied for i =1.
oAl el |
From Algorithm I we have
s " —— R,
tr(PzHE + Q2HQ1) = ”[(z A,-HRzB,-H _ZEIHRzeH + |||| |||| P) P+ (ZCHR DH |||| ||||2 Q1) O]
i=1 =1 R, =

s - m ___ R 2
=tr[Ry' Y APB —R) Y EPF,+ ||||R2|||| PP+ HZC 0D, |||| 2||||2 0"0/]
i=1 I=1 1 Jj=1 R,

From this last relation one has

tr(P'P+QY o) +tr(P/'P +0) Q) =t RHZAPB RHZEPF +RHZC 0,D;]

i=1

|||| |||| r(P" P+P P+ Q1+Q1 0)

+ 1 RHZAPB RHZEPF +RHZC OD,]

i=1

_tr[RH(ZAPB +Zc 0D, ZEPF)] 2|||| |||| &l +lelH

+ir[RI' (O APB, + ZC,QID,» -3 E,RF)]
i=1 Jj=l1 =1
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P 1 H H R 2 :
:M [tr(RY (R, = R,)) +tr(RI (R, - R ))]+2|| ”2 (21" +lal»

i &
__IRl +laf
&

This implies that (8) is satisfied for i =1.
Assume (7) and (8) hold fori = k£ —1. From (9) and applying mathematical induction assumption, from Algorithm I we have

2JR,['1+ z'|'| |'|' (B[ +le ) =0

tr(RYR) +tr(R2,R,) = tr[(R, — |2 ” 2[ZAPB ZE P.F, +Zc O.D,D"R,]

[ +led

+tr[(Rk—” ”" "||||Q it [Z AP,B, ZEPF+ZC 0.D,D"R,]

=2|R| - [ — [P (P, - % "”211_1)+Q5<Qk—”R"HZQk_l)]
1A +]o:] |R.- IR

+u P (P, - ”” "””2 P_)+0/(Q, - ”” "””2 0, )]

2 Rk ? k H

~ 3R, &[ ol +lod - e p + 070,
12 +le’ IR

+t’”(PkHPk—1+Qk Qk—l)]_

Thus, (7) holds for ; =z .

Also, from Algorithm I we have

5 A —H———H .
tr(PkIzIPk +QIZ1Qk)+tr(PkI;{1Pk +Q1Z1Qk) =tr[(z AiHRk+1BiH _ZEI R, F + ” ‘ 1" P) k
i=1 =1

[&J°

t
+(Zl CHRkHDH "” k+|1||l k) Qk (Z CHRk+1DH |||| k+i||2| /f) Qk
= R, R,

+(YCA'RB Y E " RuF," oA "“" P)"PR]
i=1 =1

= tr[R,ﬁl(ZAPB ZE PF, +Zc O.D;)+2 ”” k*h” (||pk||2 +||Qk||2)
J=1 k

+R/, (2 APRB - EPF+ Z C,0,D))]
=1 I=1 j=1
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2
- ogar JBE #10

IR

+tr[R,ﬁl(M

&
A
IR

P 2 + 2 .
= " k””R ||||2Qk|| [—2|R ] k 1
k

Y
This implies that (7) and (8) hold for i = k .
Hence, relation (7) and (8) hold forall 1 i <k
Step2: we want to show that

(R, —R,,)]+ |

(Rk —R,, )

Bl

k+1

Re(r(R7 R;)) =0 (10)

i+l

and Re(zr( z+lP +Ql+lQ,)) 0 (11)

hold for integer /=1. We will prove this conclusion by
induction. The case of / =1 has been proven in Step 1. Now
we assume that (7) and (8) holds for/ < s,s = 1. The aim is
to show

k+1

ey
“IR

[or(RL,R,) + 1r(RI,R,) = 2| R

k+1

+ladH

]JM% +lo.)

(Rl

+loH=0

and Re(tr( ,+5+1P +Qz+5+1Q )) 0 (13)

First we prove the following

Re(rr(RX Ry)) =0 (14)

and Re(tr(P/1 Py +0,00)) =0 (15)

By using Algorithm I, from (9) and induction assumption
we have

[i PB, - ZEPF+ZCQD)R]

Re(tr(R e R =0 (12)
t’”(RﬁlRo) + t’”(RsfilRo) =url(R, = HRVH
21 +lo.J
IR <
+r[(R, - Z
2] +lo.J

2
s

s

=tr(R"R,) +tr(R'R,)

=1

s s

m

B> EPF, +ZC,-QSD,DHRO]

1=l

R
0 _er([z v l ZEPF +ZCQSDJ] R)

2

2

_R—zr([ZAPB ZE PF, +ZCQD I"R,)

]) + tr(QHz C/R,D")

Pl +|0,
= —R‘—‘Z[tr(PH[iA.HR B —iE_H
Pl +lo|’ g &
s m o — t
+u(P[Y  A"R,B =) E/'R F )+ (0" > CIR,DI]
i=1 I=1 j=1
RS ’ H H H H
== (PR + O, Q) +tr(P" B + 0, 0] =0
Pl +|Q,

And
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tr( s+1P + Qs+1QO) + tr( s+1P + Q +1Q0)

s+1 s+l

2 PS)HPO+(ZCHR D +1=0-0)" 0]

s+

SCONIEN LSy
=1

s s

2

s+l s+1

P)"R]

2 s

2
+tr[(z C/R., DI +=-0)"0] +n»[(z A"R B - ZE RMF 4 sl

A

= (RS ARB, =L ERF,+ Zc 00+ R ARB, =3 BB +3C,0,0,)]
=1 I=1 =l

2

)

v+1

+i (PR + 07 Q) +ir(PU R, + 0, Q,)]
M(ZAPB ZEPF +Zc QOD)+R511(ZAPB ZEPF +Zc 0,D))]
_IAl +lel

[”(Rslil (Ry —R))+ tr(Rs[il (Ry =R ))]=

&

Then both (14) and (15) are holds
From Algorithm I and (9), induction assumption one has

o mo o g . 2
(P P+ Q" 0) +ir(PE P +0" 0)=0 (Y 4"R,.,B" - E, "R, F, +=1lp yip
i=1l =1 i+s
t t
+(Q.CR,, D} +1m Q D01+ (Y C' R, D} + 5 Q D"0]
— s Jj=1 i+s

2

+(Y A"R,, B - ZE "R..F"

i=1

i+s+]

R

P.)"P]

2 i i

it+s

m — H—H 13
= tr[(z AHR1+V+1BH Z El Ri+s+l F} )H R + (Z C;{RHSHD;{ )H Ql] + tr[(z CHR1+V+1DH) Ql]
=1 =1

2

i+s+l

s m —H —H
+tr[(ZAHRt+s+lBH ZEI Ri+s+1F} )H])z]+| [ﬂ"( i+ts l Q1+5Q)+tr( its l QH'_SQ )]

|| i+s

=R, (X ARB, =Y EPF + ZC 0.0+ RlLy(Y ARB, =Y EBF +3.C,0D))]
=1 =1 =

PO 1,1+ R R R

_” "” |:|Q ” [W(R,iHR RZIZMR )] (16)

In addition, from (9) it can be shown that
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N t

tr(RY R +tr(RY ,R)=tr[(R, ” s

its Z it its z ZEIPH'SE +ZCjQi+sDj])HRi]
NN
2
+tr[(Ri+s ” = Z it i+s z ZEIKF} +2C]QI+YD ) R]
B #1045 =
2
= tr(RILR) +1r(RILR,) = ” s r((Y, A,P.B, = Y E P, F, +ZC 0..D,1"R)

||Q1+s

|| s i=l I=1

T -
- -1 AP, B -)> EP . F+) C. Z+SD R.
e +lonf ™ ZARB 20D NR)
” i+s ’ 0 NO ol ol H N H H
=- tr(P., A R.B, E F +ir(Q,, ) C'RD;
||E+S 2 +||Ql.+b [ I"( i [; ; ) I"(Q ; J J )

+tr(P" [Z AR B" - ZE_R E')+ tr(QmZt: C"RD")]

2 2
> [tr(PLLER, - ] > b
.|

— || i+s

2. +1en,

wio - IR Ll
+ tr(Qi+s [Ql 2 Ql 1]) (Q1+s‘ Ql 2 Q[—l ])]
R IR

B 7 R
[Pees I +l0sss | [Ri-i]

Repeating (16) and (17), one can easily obtain for certain & and ,3
tr( l+.3+1 QI+3+1Q ) + tr( l+A+1P + QI+3+1Q ) a[tr( _s+1 + A+1Q0) + tr( A+1 + QﬁlQO)]

and
tr(Rz+\+l ) + tr(Rz+\+lR ) ﬂ tr(Rs+l ) + ZF(R\+1R )]

Combining these two relations with (12) and (13) implies illustrate the application of our proposed methods.

_Ir[
( 1+s‘ 2 P[—l])
Ty

[ ( 1+s 1—1 Q1+SQ1—1)+W(Pz+v i- 1+Q1+vQ1 1)] (17)

that (8) and (9) hold for/ = s +1. From step (1) and (2) the Example
conclusion holds by the principle of induction. In this example we illustrate our theoretical result of
Remark algorithm I for solving the matrix Equation

Lemma 1 implies that if there exist a positive number I
such that P =0 and O, =0 but R, #0 , then the matrix ZAVB +ZCWD ZEVF+G
equation (1) is inconsistent. B B
With the above two lemmas, we have the following
theorem.
Theorem 2[19] AVB, + AVB, + CWD, + C,WD, = E,VF, +G
If the matrix equation (1) is consistent, then a solution can
be obtained within finite iteration steps by using Algorithm I~ Given

L icesV I
for any initial matrices ¥, W, 347 - -3 243 142 0
A =|1+2i 4+i 0 | A, =|-1+3i 3-i 2

As a special case

4 Numerical Examples s 1+i 4 4 -3 0

In this section, we present a numerical example to
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-1-i 2 5
E =1 -1 2+i 3+i
4+i 20 -3

1+2i —i 1

c=| 4 2
3-i 3+i 1+i

i 1-i 1+ —1+i 2+i
C,=|-3 3 3i ,BIZ

>

2-i 1+i 2 3 -
2i 4 1+3i 2-i -2 1
B, =|_. 1D = . | ,D, = . .
5i 1+3i 1+i 1+2i 1+i 2-2i
-56+20i —-9+53i
. . 1+i 0
C= Tli 51+3i FI={ ) }
’ ’ 2i =3i
13+14i  74-14i
Taking

00 00
i=10 0] ,#=|0 0]|.We apply Algorithm I to compute
0 0 0 0
VW, .
After iterating 14 steps we obtain

0.9455-0.5720i 0.8962 +0.2947i

V, =| 1.4545-0.8987i  1.7584-0.4302i
-0.4653+1.0047i  0.2661-0.8237i

1.6318 +1.8856 i 0.0742-0.1201;
W, =| 09854-0.7156;/  —0.1297-1.8948

—-0.2652-0.1812 —1.0442-0.1023
which satisfy the matrix equation

AVB, + A,VB, + C,WD, + C,WD, = E,VF, +G
with the corresponding residual
IRl =G + EVF, - 4VB, - A4vB, -CWD, ~C,WD,| =7.2584x10™"
The obtained results are presented in figure 1, where

ro= R (Residual)

From Fig. 1, it is clear that the error Oy is becoming

smaller and approaches zero as iteration number k& increases.

This indicates that the proposed algorithm is effective and
convergent.

N
T

R
T

& & A b

5y
T

8 L L L L L L
0 2 4 ] 8 10 12 14

k { iteration number)

Fig. 1. The residual and the relative error versus k (iteration number)

5 Conclusions
Iterative solution for the general Sylvester-conjugate

matrix equation Y AVB+Y CWD, =Y EVF+G is presented.

i=l j=1 1=l
We have proven that the iterative algorithm always converge
to the solution for any initial matrices. We stated and proved
some lemmas and theorems where the solutions are obtained.
The obtained results show that the methods are very neat and
efficient. The proposed methods are illustrated by numerical
example. Example we tested using MATLAB to verify our
theoretical results.
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