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Abstract:  The Method of Lines Combined with Chebyshev Spectral Method respect to weighted residual (Collocation Points) 
for Space-Time fractional diffusion equation is considered, the direct way will be used for approximating Time fractional and the 
expiation of shifted first kind of Chebyshev polynomial will be used to approximate unknown functions, the structure of the 
systems and the matrices will be fund, the algorithm steps is illustrated, The tables and figures of the results of the 
implementation by using this method at different values of fractional order will be shown, with the helping of programs of 
matlab. 
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1. Introduction 
Diffusion equation provide an important tool for modeling 

a numerous problems in engineering, physics and others 
science, the generalization of the integer order diffusion 
equation to space fractional order, time fractional order or 
more general is the space-time fractional order diffusion 
equation (S-TFPDE), is more important to study it and to 
find the easier ways to solve it. 

When time dependent PDEs are solved numerically by 
spectral methods[1, 2], the pattern is usually the same: employ  
spectral treatment to space dependency and use finite 
difference in time or leave the time dependency to obtain a 
system of ordinary differential equations (ODE) in time. In 
this paper, S-TFPDE has been considered �����, ����� = 	�����, ����� + 
��, ��; 

0 < � ≤ 1 < � ≤ 2, 0 ≤ � ≤ �, 0 ≤ � ≤ �, (1) 

With initial and boundary conditions ��0, �� = ���, �� = 0	; ���	0 ≤ � ≤ �, ���, 0� = ����; 		���	0 ≤ � ≤ �. 
(2) 

The idea of the treatment in this paper depends on the 
method of discretization in time (the method of lines) [3]. In 

this method the time interval �0, ��  is divided into � 
subintervals ��, � , ⋯ , �"  ( �# = $�#%�, �#&, ' = 1, 2,⋯ ,��  of 

length ( = 	 )" , and the problem is transformed to solve 

fractional boundary value problem along each time level. For 
the fractional boundary value problem a spectral collocation 
method is employed. 

Spectral method [1, 2] involve seeking the solution to 
differential equations in terms of a series of known, smooth 
functions. Spectral methods may be viewed as an extreme 
development of the class of discretization schemes for 
differential equations known generally as the method of 
weighted residuals (WRM). The key elements of the WRM 
are the trial functions and the test functions. The trial functions 
are used as the basis functions for a truncated series expansion 
of the solution. The test functions are used to ensure that the 
differential equation is satisfied as closely as possible by the 
truncated series expansion. The choice of test function 
distinguishes which used spectral schemes, is collocation. In 
the collocation approach the test functions are the translated 
Dirac delta functions centered at the collocation points. The 
treatment considered in this work depends on the use of the 
collocation approach. 

Collocation 
The core of the collocation method is definition of the 

residue function and the collocation points. Consider the 
boundary value problem, [4, 5]. 
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ℒ	+ = �,  ,	 ≤ �	 ≤ -, +�,� = 	+�-� = 0. 
(3) 

Where ℒ is any operator. An approximate solution . will 
not, in general, satisfy (3) exactly, and associated with such an 
approximate solution is the residual defined by /�.� = 	ℒ	. − �. (4) 

It is clear that if .	 is the exact solution then /�.� = 0. 

In the collocation the trial functions, 1+#2#3�4
, are used as 

the basis functions for a truncated series expansion of the 
solution. .4��� = ∑ 67	+#���4#38 . 

The shifted Chebeshev polynomials �4∗��� are used as the 
basis function +# , and the Gauss-Labatto points �# = 0.5 cos ?#	@4 A + 0.5 , ' = 0, 1,⋯ ,B  are used as the 

collocation points. Accordingly, /C.4��#�D = 	ℒ	.4��#� − �, ' = 0, 1,⋯ ,B. (5) 

Represents a system of �B + 1�  algebraic equations in �B + 1� unknowns 67 . Determination of 67  enables us to 
write the approximate solution as a linear combination of the 
bases functions. 

2. The Caputo’s Fractional Derivatives � EFG�HI , [2] 

For any real function f(x) ∈ 6K , the Caputo fractional 
derivative of order � is: 

LM����� =8N �Г�K%��P �� − Q�K%�%�M8 ? RRSAK ��Q�TQ ,  (6) 

 UℎW�W		� > 0;Y − 1 < � ≤ Y 

LM��Z = [\
] 0																					 ^�	_ < �											0																				 	^��Z	`�aQ�,a�	Г�_ + 1�Г�_ − � + 1�	��Z%��	 ^�	_ ≥ �													 c (7) 

The Caputo fractional derivative operator is linear 
in the sense that for any two constants A, B and any 
two functions {f(x) and g(x)}∈ 6K, one can write 

 

LM�{e���� ∓ g
���} = e LM����� ∓ g LM�
���8N8N8N  (8) 

3. Chebyshev Polynomials CPs [1, 8, 9] 
Chebyshev polynomials (CPs) of the first kind denoted by �i���, −1 ≤ � ≤ 1, a = 0, 1, 2,⋯ and defined as �8��� = 1, ����� = � and �i��� = 2��i%���� − �i% ���, a ≥ 2. (9) 

The significance can be immediately appreciated from the 
fact that the function cos�aj� is a Chebyshev polynomial 

function of cos�j�. Specifically, for a ≥ 0 cos�aj� =	 �i�cos�j��, (10) 

The analytic form of the Chebyshev polynomial �i��� of 
degree a is given by 

�i��� = a		2k�−1�l Г�a − m�m! 	Г�a − 2m + 1�
opqr
l38 �2���i% l� 

�8��� = 1. 
 

(11) 

where oi r is the floor of  
i  , (the integer part of  

i  ). 

It is clear that CP �i��� is a polynomial of degree a, The 
CP’s have n zeros in the interval [-1, 1], given by 

�# = cos	� �#s��i @ �, j=0,1,2,…,n-1, 

The CP’s have n+1 extremes points in same interval [-1,1], 
given by 

�# = cos	�#@i �,   j= 0,1, 2, …, n. (12) 

The CP �i��� are orthogonal functions in the sense that 

P )t�M�	)p�M�u�%Mq�%� 	T� = 	v0 Y ≠ a@ Y = a	 ≠ 0x Y = a = 0 c . (13) 

In order to use CPs on intervals of the form �,, -�  other 
than the interval �−1, 1�  one can use the change of the 

variable � = 2 ?y%z{%zA − 1,  which transforms the points � ∈ �,, -�  to � ∈ �−1,1� , conversely,	� = ?{%z A � + ?{sz A , 

transforms the points � ∈ �−1,1� to � ∈ �,, -� 
Accordingly, the shifted Chebyshev polynomials (SHCP), �i∗��� of degree n on interval [a,b] can be written as 

�i∗��� = �i |2 ?� − ,- − ,A − 1} , ���	a ∈ ℕ, a ≥ 1, 
�8∗��� = 1. (14) 

Where �i��� is the first kind CP defined in (11). 

4. Fractional Derivatives of SHCP 
The Caputo’s Fractional derivative of SHCP defined in (14), 

of order > 0 , can be written with the helping of properties in 
(6-8) and the definition of the SHCP formula (12). 

Lemma: The Caputo’s fractional derivatives of order Y − 1 < � < Y,Y = ���, of shifted Chebyshev polynomial 
of degree a, 0 ≠ a ∈ ℕ, a ≥ 1, on interval [a,b] is 

LM�zN �i∗��� = a2 � 2- − ,�K �� − ,�K%� ∗ 

k�−1�l Г�a − m�Г�m + 1�
opqr
l38 �2��i% l����; a, m,Y�, 

 

(15) 
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���; a, m,Y�
=
[��
\
��]

0,																																																	 Y > a − 2m1Г�Y − � + 1�,																																														 Y = a − 2m
k �−1�7si% l%KГ�� + Y − � + 1�Г�a − 2m −Y − � + 1�∗ �2 ?� − ,- − ,A�7 ,

i% l%K
738 Y < a − 2m

c 

Proof 
Consider the Caputo’s fractional derivatives of power 

functions and the linearity property 

LM�e�Z = � 0	,																															^�	_ = 0	 	e	Г�_ + 1�Г�_ − � + 1�	��Z%��	,									^�	_ ≥ �.c 	UℎW�W	e	^Q	`�aQ�,a� 
Write formula (11) of SHCP and applying the Caputo’s 

derivative on it with using the linearity property, yields 

LM�zN �i∗��� = LM�zN �i |2 ?� − ,- − ,A − 1} 
= a2k�−1�l Г�a − m��2��i% l�m! 	Г�a − 2m + 1�

opqr
l38 LM�zN  

|2 ?� − ,- − ,A − 1}i% l 

(16) 

The Caputo’s derivative part in this formula can be 
determined as follows, Use the definition of CFD, 

LM�zN |2 ?M%z{%zA − 1}i% l = �z	 MK%�LMK |2 ?M%z{%zA − 1}i% l, 

then the following three cases are obtained 

i-If Y > a − 2m, LMK |2 ?M%z{%zA − 1}i% l = 0, 
ii-If Y = a − 2m, LMK |2 ?M%z{%zA − 1}i% l 

= �a − 2m�! � 2- − ,�i% l , 
Which is the constant term and Y − � ≥ 0, using R-L FI to 

opten, 

�z	 MK%�LMK |2 ?� − ,- − ,A − 1}i% l =	 �a − 2m�! � 2- − ,�i% l ∗ 
* �M%z��t���	Г�K%�s�� , 

Thus 

LM�zN |2 ?� − ,- − ,A − 1}i% l Г�a − 2m + 1� ∗ 

∗ � 2- − ,�K �� − ,��K%��	Г�Y − � + 1�, 
i-If Y ≤ a − 2m, 			LMK |2 ?M%z{%zA − 1}i% l 

= Г�i% ls��	Г�i% l%Ks�� ?  {%zAK |2 ?M%z{%zA − 1}i% l%K. 

Since	a − 2m − Y ∈ ℤs,aT	a − 2m ≥ 0, by applying the 
binomial expantion to the last term and consequently using the 
R-L FI term by term, there is 

�z	 MK%� |2 ?� − ,- − ,A − 1}i% l%K 

= ?  {%zAi% l%K �z	 MK%� |�� − ,� − ?{%z A}i% l%K, 

		= � 2- − ,�i% l%K �z	 MK%�� k �a − 2m − Y� � �� −�7 ∗i% l%K
738  

*?− {%z Ai% l%K%7� 
= �−1�i% l%K k Г�a − 2m − Y + 1�	Г�� + 1�Г�a − 2m − Y − � + 1�

i% l%K
738  

∗ �−1�7 ?  {%zA7 �z	 MK%��� − ,�7, 
	= Г�a − 2m − Y + 1��� − ,�K%� ∗ 
∑ �%����p�q��t	Г�i% l%K%7s��Г�7sK%�s�� ?  {%zA7i% l%K738 ∗ |2 ?M%z{%zA − 1}7, 

Thus obtained 

LM�zN |2 ?� − ,- − ,A − 1}i% l = 

= Г�a − 2m + 1� � 2- − ,�K �� − ,�K%� ∗ 

∗
[��
\
��]

0,																																																								 Y > a − 2m,1Г�Y − � + 1�,																																													 Y = a − 2m,
k �−1�7si% l%KГ�� + Y − � + 1�Г�a − 2m −Y − � + 1�		∗ �2 ?� − ,- − ,A�7,

i% l%K
738 Y < a − 2m.

c 

Which completes the prove 

5. Description of the Method 
The considered method has two steps, the first step is using 

the direct way to approximate the time fractional part, the 
diffusion equation will be system of space fractional ordinary 
differential equations formula (17), the second step is using 
the shifted Chebyshev polynomials to approximate the 
unknown functions then, furmula(17) yield the system of 
algebraic equation formula (22) with unknown coefficients. 
Using the spectral method with the weighted residual 
(collocation method) to find the unknown coefficients. 
Consider the space-time fractional diffusion equation ����M,y��y� =	 ����M,y��M� + 
��, ��  ; 0 < � ≤ 1 < � ≤ 2,  0 ≤ � ≤ �, 0 ≤ � ≤ � , respect to initial and boundary 
condition 
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I.C  ���, 0� = ����; 				0 ≤ � ≤ �, 
B.C ��0, �� = ���, �� = 0	; 	0 ≤ � ≤ �, 
To solve S-TFPDE, and it is clearly to show that �l = ���, �l�, m = 0,1,⋯ ,� − 1, 1 < � ∈ ℕ,  is the 

numerical function at time-step �l = m∆�, ∆� = )"	.  

The direct way (finite difference method for Caputo’s 
fractional derivatives) is 

Ly��	N ��	, �ls�� ≅ �k	-#	l
#38 ��	l%#s� − �	l%#� + ��τ�, 
0 < � ≤ 1, 

Ly��	ls�	N = ��k 	�-#s�	l%�
#38 − -#	��	l%# + �	ls� − -l	 �	8� 

-#	 = �' + 1��%� − '�%� , � = ���Г� %��		, 
for all � ∈ �0, ��, 
l = ���, �l�,	so that one can rewrite the 
S-TFPDE eq(1) by using the approximation of time fractional 
as �ls���� = C�LM� + 1 − -��D�l���

+								k�-#� − -#s�� ��l%#���l%�
#3�+	-l��8��� 

                     +�
l��� 
(17) 

In general the idea of the Spectral Method(SM), [6, 7], is 
finding the trial approximation for the unknown functions �l���, by using known basis and assuming this unknown 
functions equal finite sum of this basis,(in this paper, shifted 
Chebyshev polynomials have been used), as �4l ��� = ∑ 67l�7∗���,i738 	UℎW�W	a ∈ ℕ, a ≥ 1	,   (18) 

Where m = 0,1,⋯ ,� − 1, 1 < � ∈ ℕ,  
it is well known formula (17) can be written as ���4l ���� =��
	l����, UℎW�W	���, �l� ∈ L,  and M denoted an operator 
which maps set of the functions U into set of G, s.t �	l ∈ U , 
	l  ∈  G and D is the prescribed domain, since the 
approximate solutions given in eq(18) will be not (in general) 
satisfy (1) exactly, then we define the residual /i��, 6	l� as /i��, 6	l� = ���4l ���� − ��
	l����, (19) 

The residual depended on the coefficients 6	l. 
Now the problem is, how one can find (n+1) coefficients 67l in equation (19), to find the solutions in equation(18)? 
The answer of this question is, by using the weighted 

residual method. 
Weighted Residuals Methods (WRM)[4,5], in this method 

one has many ways to  define weighted function on D to 
make the weighted integral on the D equal zero, in this work  
the collocation method is used, 

Defined ���� = �1 ,�	�ℎW	`����`,�^�a	_�^a�Q0 													��ℎW�U^QW �,  now 

one can write 

������/i��� , 6	l�	
� = 0, (20) 

UℎW�W	�� , ^ = 0,1,⋯ ,B − 1,  are the collocation points of 
Chebyshive which are given in eq(12), from the definition of 
weighted function ���� one gets /i��� , 6	l� = ���4l ����� − ��
	l�����, or  ���4l ����� = ��
	l�����. (21) 

Now from equations (17), (18), and eq(21) one can rewrites 
the formulas (17) as 

k67ls��7∗���i
738 =k67lC�LM� + 1 − -��D�7∗���	i

738  

+∑ $∑ 67l%#C-#� − -#s�� D�7∗���	i738 &l%�#3�  

+k678-l��7∗���	i
738 + 
ls���� 

(22) 

From definition of residual eq(21) and the colocation points 
eq(12), one can obtain a linear system of algebraic equations 
in the unknowns {67ls�}738i  in the form e∗67ls� = -,  where  e678 = �. (23) 

Where the right hand side - is defined explicitly in terms 
of known data in the previous time levels. 

- = e67l +∑ �#67l%# + �l%�#3� 678 + �ls����, (24) 

67ls� =  686�⋮6i¢
ls�

, m = 0,1,⋯ , ∈ ℕ, 

�ls� =  �
��8��
����⋮�
��i�¢
ls�

, m = 0,1,⋯ , ∈ ℕ. 

�# = £¤¤
¤¥�-#� − -#s�� ��8∗��8� �-#� − -#s�� ���∗��8��-#� − -#s�� ��8∗���� �-#� − -#s�� ���∗���� ⋯ �-#� − -#s�� ��i∗��8�⋯ �-#� − -#s�� ��i∗����⋮ ⋮�-#� − -#s�� ��8∗��i� �-#� − -#s�� ���∗��i� ⋮ ⋮⋯ �-#� − -#s�� ��i∗��i�¦§§

§̈ 

e∗ =  �8
∗��8� ��∗��8��8∗���� ��∗���� ⋯ �i∗��8�⋯ �i∗����⋮ ⋮�8∗��i� ��∗��i� ⋮ ⋮⋯ �i∗��i�¢, 

	678 =  686�⋮6i¢
8
, � =  ���8������⋮���i�¢ 
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e =		
£¤¤
¤¥��LM��8∗ � �8∗ 0 -���8∗���8� 	
��LM��8∗ � �8∗ 0 -���8∗����� 	

⋯ ��LM��i∗
⋯ ��LM��i∗

⋮ 	
��LM��8∗ � �8∗ 0 -���8∗���i� 	

⋮
⋯ ��LM��i∗

we can calculate the starting vectors 678  
condition as 

Since ��0, �� 	 �8��� 	 ����, ���	,��	�
then  

e∗678 	 �.     

6. Numerical Examples 
Example with known exact solution is considered. The 

example is chosen such that the behavior of the solution has 
different characterizations with space and tim
polynomial, sinusoidal and exponentially decay. In the 
calculations, the explicit finite difference methods is 
approximate the fractional time derivative and obtained a 
fractional boundary value problem along every time level. The 
solution of the fractional boundary value problem is
ximated by a truncated shifted Chebyshev
�l��� 	 	∑ 67l�7∗���i738 , as a trial solution in the collocation 

method with the collocation points �
0, 1,⋯ , a. Also, three graphs have been introduced, in the first
� 	 2 and different values of � ( 0.6, 0.7, 0.9 and 1.0), in the 
second � 	 1.5 and different values of � 
1.0), and in the third group � 	 1 and different values of 
( 1.6, 1.7, 1.9 and 2.0).  

Moreover, tables introduced which contain
coefficients of the shifted Chebyshev Polynomial 
the time level �, � is the order of time derivative and 

Figure 1. the exact solution and the numerical solution at different orders of 

IH.©,ª«  IH.«,ª«  IH.¬,ª«  
0.444765568 0.43463187 0.44526423
0.049301693 0.02090821 0.00373299
-0.501748138 -0.46944618 -0.47150557
-0.005010121 -0.00183968 -3.05E-04
2.69E-02 2.60E-02 2.64E-02
-3.49E-15 -2.08E-15 -3.15E-16
-7.25E-04 -6.07E-04 -5.66E-04
-3.42E-16 -4.11E-16 -5.33E-16

The Line Method Combined with Spectral Chebyshev for Space
Diffusion Equation 

� �i∗ 0 -���i∗���8�
� �i∗ 0 -���i∗�����

⋮
� �i∗ 0 -���i∗���i�¦

§§
§
¨
 

 , from the initial 

� ∈ �0, 1�, 

.                 (25) 

Example with known exact solution is considered. The 
example is chosen such that the behavior of the solution has 
different characterizations with space and time ranging from 
polynomial, sinusoidal and exponentially decay. In the 

t finite difference methods is used to 
approximate the fractional time derivative and obtained a 
fractional boundary value problem along every time level. The 

lution of the fractional boundary value problem is appro 
imated by a truncated shifted Chebyshev polynomials 

, as a trial solution in the collocation 

�# 	 cos	�#@i � , ' 	
three graphs have been introduced, in the first 

( 0.6, 0.7, 0.9 and 1.0), in the 
 ( 0.6, 0.7, 0.9 and 

and different values of � 

which contain the values of the 
of the shifted Chebyshev Polynomial 6�,�l  (m is 

is the order of time derivative and � is 

the order of the space derivative)
determined along each time step by solving a linear system of 
equations in the form defined in (22),

Example 
Consider the S-TFPDE 

Ly����, �� 0 LM����, �� 	 
�
0 � t � 1 and, 0 � 	x � 	1, where


��, �� 	 sin�x�� eW%y 0 W%y ?
e 	 �01�� , Subject to the boundary conditions
��0, �� 	 	��1, �� 	 0, and the initial condition,
���, 0� 	 sin	�x��, 0	 � 	x �

���, �� 	 W%ysin	�x��. 
Solutions 
Consider a trial solution of the form

�4l 	 k67l�7∗��� 		
±

738
68l�

6²l�²∗����
Now for the first initial solution 

from the initial condition by 

	�l���� 	 �8���� 	
^ 	 0, 1, 2,⋯ , 7; 	UVW�W		�� 	

��7∗��67�8 	 �������, UVW�W	�,
The results of the solution of this exa

Matlab are given in the following
(1-3).  

the exact solution and the numerical solution at different orders of α with fixed β=2, �∆� 	 0.0001, a

Table 1. ( ∆� 	 0.0001, a 	 7�. 
I´,ª«  IµH Col-point 

0.44526423 0.47192077 0.472001216 1 
0.00373299 0.00163802 0 0.950484434
0.47150557 -0.49914043 -0.49940326 0.811744901

04 -1.33E-04 0 0.611260467
02 3E-02 0.027992033 0.388739533
16 -3.08E-16 0 0.188255099
04 -5.94E-04 -0.000589991 0.049515566
16 -4.96E-16 0 0 

hod Combined with Spectral Chebyshev for Space-Time Fractional 

the order of the space derivative). The coefficients are 
determined along each time step by solving a linear system of 
equations in the form defined in (22), 

��, �� , 0 < α ≤ 1 < β ≤ 2; 
, where 

?x� sin ?�x � �x
2 AA ; 

Subject to the boundary conditions 
and the initial condition, 

� 	1 ,whose exact solution is 

Consider a trial solution of the form 

�8∗��� � 6�l��∗��� � ⋯� 

� ��6¶l�¶∗���, 
Now for the first initial solution �8��� one can calculate it 

� ���� , 0� 	 sin�x��, 
	 0.5 ∗ cos ?�@± A � 0.5 , solve 

, ^ 	 0,1,⋯ ,7. 
The results of the solution of this example, By helping of 

following figures(1-3) and tables 

 

a 	 7�, h=0.0125, � 	 0.01. 

 ·Ģ  
¹ 8.² 0.075113082 

0.950484434 ¹ 8.¶ 0.062036656 
0.811744901 ¹ 8.º 0.046401034 
0.611260467 ¹ � 0.009662424 
0.388739533   
0.188255099   
0.049515566   
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Figure 2. the exact solution and the numerical solution at different orders of 

I´,´.©«  I´,´.««  I´,´.¬«  
0.448967636 0.42975713 0.44202637
0.018023305 0.01056324 0.00272314
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Figure 3. the exact solution and the numerical solution at different orders of 

IH.©,´.»«  IH.©,´.»«  IH.©,´.»«  
0.470306567 0.47093563 0.47094925
0.00147331 1.60E-04 3.29E-0.4
-0.498956198 -0.49907929 -0.49908717
-8.17E-05 1.46E-0.4 2.09E-0.4
2.80E-02 2.79E-0.2 2.78E-0.2
-2.93E-05 8.94E-05 1.81E-04
-5.60E-04 -6.72E-0.4 -7.66E-04
-1.56E-05 4.00E-0.5 8.75E-05
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the exact solution and the numerical solution at different orders of α with fixed β=1.5, ( ∆� 	 0.0001,

Table 2. this results at( ∆� 	 0.0001, a 	 7�. 
I´,ª«  IµH Col-point 

0.44202637 0.47001453 0.472001216 1 
0.00272314 0.00132116 0 0.950484434
0.47122402 -0.49893334 -0.49940326 0.811744901

05 -5.58E-05 0 0.611260467
02 3E-02 0.027992033 0.388739533
05 -1.64E-05 0 0.188255099
04 -5.73E-04 -0.000589991 0.049515566
05 -9.31E-06 0 0 

the exact solution and the numerical solution at different orders of β with fixed α =1 ,( ∆� 	 0.0001, a

Table 3. ( ∆� 	 0.0001, a 	 7�. 
 IH.©,´.»«  IµH Col-point 

0.47094925 0.47112135 0.472001216 1 
0.4 1.48E-0.4 0 0.950484434

0.49908717 -0.49883192 -0.49940326 0.811744901
0.4 -6.75E-06 0 0.611260467
0.2 3E-02 0.027992033 0.388739533
04 -3.40E-08 0 0.188255099
04 -5.90E-04 -0.000589991 0.049515566

05 -1.49E-07 0 0 

Discussion and Conclusions 
It is known that many differential equations can be solved 

by using the WRM. The collocation method is the simplest 

method among the WRM. The efficiency of using this method 
depends on the selection of the collocation points. 
treatment depends on transforming the time dependent 
parabolic FPDE into a family of fractional boundary value 
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a 	 7�, h=0.0125, � 	 0.01 

 ·Ģ  
¹�.²�  0.007824117 

0.950484434 ¹�.¶�  0.008498308 
0.811744901 ¹�.º�  0.008526541 
0.611260467 ¹ � 0.008457197 
0.388739533   
0.188255099   
0.049515566   

  

 

a 	 7�, h=0.0125, ∆� 	 0.01 

 ·Ģ  
¹�¼8.² 0.049847529 

0.950484434 ¹�.¼8.² 0.062972866 
0.811744901 ¹�.¼8.² 0.049849099 
0.611260467 ¹�.¼8.² 0.007492913 
0.388739533   
0.188255099   
0.049515566   

  

efficiency of using this method 
depends on the selection of the collocation points. The 
treatment depends on transforming the time dependent 
parabolic FPDE into a family of fractional boundary value 
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problems along time levels with the help of the finite 
difference method. the shifted Chebyshev polynomials of the 
first kind is used as the bases function of the trial solution, and 
the Gauss Lobatto points are used as the collocation points., 
thus the problem is transformed to one of solving an algebraic 
linear systems in the coefficients of the bases functions 
included in the trial solution. Thus  an explicit approximation  
is obtained for the solution along each time level which 
enables to approximate the solution at any point along this 
time level not only at some grid points as in the finite 
difference. Although the algebraic system is dense in this 
treatment in comparison with those obtained with the finite 
difference method the number of equations is relatively very 
small. From the graphs one can see that this treatment 
performs more efficiently in the integer case (as the fractional 
orders of the derivatives approaches the classical integer case 
as the approximate solution approach the exact solution). 
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