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Abstract: The Method of Lines Combined with Chebyshev SpéMethod respect to weighted residual (Collocaffmints)
for Space-Time fractional diffusion equation is sinlered, the direct way will be used for approximgime fractional and the
expiation of shifted first kind of Chebyshev polynial will be used to approximate unknown functiotige structure of the
systems and the matrices will be fund, the algoritsteps is illustrated, The tables and figures he&f tesults of the
implementation by using this method at differenfuea of fractional order will be shown, with thelgiag of programs of
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1. Introducti this method the time interval0,T] is divided into M
- Introauction subintervals Iy, I, -+, Iy (I; = [tj_1,t;],j = 1,2,--,M) of
Diffusion equation provide an important tool for deding length t = % and the problem is transformed to solve

a numerous problems in engineering, physics anersth fractional boundary value problem along each tievel. For

science, the generalization of the integer orddfusion the fractional boundary value problem a spectréibcation
equation to space fractional order, time fractioogder or  method is employed.

more general is the space-time fractional ordefusiibn Spectral method [1, 2] involve seeking the solution
equation (S-TFPDE), is more important to studyriti@o ifferential equations in terms of a series of knpwmooth
find the easier ways to solve it. functions. Spectral methods may be viewed as aremxt

When time dependent PDEs are solved numerically byevelopment of the class of discretization scherfas
spectral methods[1, 2], the pattern is usuallyst@e: employ gifferential equations known generally as the methaf
spectral treatment to space dependency and usee finjyeighted residuals (WRM). The key elements of thRNV
difference in time or leave the time dependencplitain a re the trial functions and the test functions. Fiaé functions
system of ordinary differential equations (ODE)time. In  5re ysed as the basis functions for a truncatéessexpansion

this paper, S-TFPDE has been considered of the solution. The test functions are used taienthat the
0l t)  0Fulxb) differential quation is sat_isfied as cIosejy asgiale by the
g "+ g(x,t); truncated series expansion. The choice of test tifumc

at” oxFh (1)  distinguishes which used spectral schemes, isaatitn. In
0<a<1<f<20<x<LO<t<T, th_e collocation approach the test functions ar_etl_meslated
Dirac delta functions centered at the collocatioints. The

With initial and boundary conditions treatment considered in this work depends on tleeafighe

collocation approach.
u(0,t) =u(L,t)=0;for0<t<T, Collocation
(2) The core of the collocation method is definition the

= . <x<lL. . . ; . .
ulx,0) = f(x); for0=x=<L residue function and the collocation points. Coesithe

The idea of the treatment in this paper dependshen boundary value problem, [4, 5].
method of discretization in time (the method oBBh[3]. In
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Lo=f, a<x <b,

p(a) = p(b) = 0.

Where £ is any operator. An approximate solutignwill
not, in general, satisfy (3) exactly, and assodiatgh such an
approximate solution is the residual defined by

RW) = Ly —f. (4)
It is clear that ifip is the exact solution theR(y) = 0.
In the collocation the trial function%gp]-}?’:l, are used as

the basis functions for a truncated series expanesfothe
solution. YV (x) = X €, ¢;(x).
The shifted Chebeshev polynomidlg(x) are used as the
basis functiong;, and the Gauss-Labatto points
—05cos( )+05 j=01,-
coIIocat|0n points. Accordingly,

RWN(x)) = LYN(x)—f, j=0,1,-,N (5)

Represents a system @N + 1) algebraic equations in
(N + 1) unknownsC, . Determination ofC, enables us to
write the approximate solution as a linear comlmaof the
bases functions.

3)

-,N are used as the

2. The Caputo’s Fractional Derivatives
(609, [2]

For any real function f(xX)e C™, the Caputo fractional
derivative of orderx is:

d
§DEfO) = Y= )™ (£) fl)ds . (6)
where x >0m—-1<a<m
0 ifp<a
. 0 if xP constant
DxP = Iy +1) 7)

_ W e >
F(p—a+1)x fp=za
The Caputo fractional derivative operator is linear
in the sense that for any two constants A, B and an
two functions {f(x) and g(x)E C™, one can write
6DZ{Af(x) F Bg(x)} =

ASDEf(x) F BGDZ g (x) (8)

3. Chebyshev Polynomials CPs [1, 8, 9]

Chebyshev polynomials (CPs) of the first kind dedoby
T,(x), -1<x<1,n=0,1,2,-- and defined as

To(x) =1, T;(x) =x and

(9)

T, (x) = 2xTp_1(x) — Ty (x),n = 2.

The significance can be immediately appreciatethftbe
fact that the functiorcos(nf) is a Chebyshev polynomial
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function of cos(8). Specifically, forn = 0
cos(nf) = T,,(cos(6)), (20)

The analytic form of the Chebyshev polynomiglx) of
degreen is given by

5

TG =5 ) (~Dk
k=0

To(x) = 1.

I(n— k)
T(n— 2k + 1)

(ZX) (n—2k)
(11)

where BJ is the floor of > , (the integer part of. ).
It is clear that CH,,(x) is a polynomial of degree, The

CP’s have n zeros in the interval [-1, 1], given by

Xi = COS

] (z(j:l) g), j=0,1,2,...,n-1,

The CP’s have n+1 extremes points in same int¢+VAl],
given by
i=0,1,2,...,n

Xj = cos (%T), (12)

The CPT,(x) are orthogonal functions in the sense that

m¥*n
fl T (%) Tn(x) dx = m=n #0 .

0
n —
-1 [1—x2 =32 (13)
7 m=n=0
In order to use CPs on intervals of the fofmb] other
than the interval[-1,1] one can use the change of the

variable x =2 (Z_TZ) —1, which transforms the points

t € [a,b] to x € [-1,1], converselyt = (bz;a)x + (“Ta)
transforms the points € [—1,1] to t € [a, b]
Accordingly, the shifted Chebyshev polynomials ($HC
T, (x) of degree n on interval [a,b] can be written as
Ti(x) =T, [2( )—1] forneN,n =1,
(14)
Ty (x) = 1.

WhereT,(x) is the first kind CP defined in (11).

4. Fractional Derivatives of SHCP

The Caputo’s Fractional derivative of SHCP defiire(lL4),
of order> 0 , can be written with the helping of properties in
(6-8) and the definition of the SHCP formula (12).

Lemma: The Caputo’s fractional derivatives of order
m—1< g <m,m = [B], of shifted Chebyshev polynomial
of degreen,0 # n € N,n = 1, on interval [a,b] is

m

ny 2
DI =2 () @-ar

b
Z( DF oo
k=

T(n—k) (15)

(n—2k) .
XCEE) 2 M(x;n, k,m),
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M(x;n, k,m)
( 0, m>n-—2k
' ! =n—2k
Tm-p+1) m=n
=\ nezkem (_1)r+n—2k—m
Z FTr+m—-F+DIMn—2k—-m—-r+1) 1 n_ok
=0 2 x—a T
L= 2=
Proof

Consider the Caputo’s fractional derivatives of pow
functions and the linearity property

0, ifp=0

AT(p+1)
Te-p+1)

Dfo” = where A is constant

x@=A) ifp=p.

Write formula (11) of SHCP and applying the Capsito’

derivative on it with using the linearity properyyelds

cnB = _cphB X—ay
cpfrr(x) = SpPT, [2 (b — a) 1]
I'(n—k)(2)™20 c

5]
n
- E;(_l)k kKIT(n—2k+1) @

G-

¢pk (16)

The Caputo’s derivative part in this formula can be

determined as follows, Use the definition of CFD,

! [2(22) 1] = op 2 -1
then the following three cases are obtained
Hf m > n - 2k, Dy [2 (22) - 1]”" =0,
it m=n-2k DF[2(=2) - 1]"_”
2 n—-2k
= -201(=)

Which is the constant term amd — @ = 0, using R-L Fl to
opten,

m—-B x—ay n-zk 3 ( 2 )_
JT D;”[z(b_a) 1] = (n-20)! (;— «
*(x_a)(m—B)

r(m-g+1)"’

Thus
CDB[ ( )—1] F(n—2k+1)*

( 2 )m (x —a)m=h
*
b—a/ T(m-pB+1)

i-If m<n-2k, DI’ [2 (g) 3 1]n—2k

_ I(n—-2k+1) 2 \™ x—-a n-2k-m

- I'(n-2k-m+1) (E) [2 (E) N 1] '

Sincen — 2k —m € Z*and n — 2k = 0, by applying the
binomial expantion to the last term and consequersing the

R-L FI term by term, there is
Sl R

)T - (2

n—-2k-m

2 n—-2k-m

N D

r=0

* b—a n—-2k-m-r
(=)

n—-2k-m

= (=1)n-2k-m z
r=0

(-1 (G2) P —ay

=n—-2k-m+1D)(x—a)y™ %=

(=) +[2G=) -1

Im—-2k-m+1)
Fr+DIn—-2k-m-r+1)

n—2k—m (_1)r+n—2k—m
r=0

F(n—-2k-m-r+1)I'(r+m-B+1)

Thus obtained

of [2(%

— -2k
h— Z) - 1]" -
m

) (x —a)™F %

0, m>n -2k,
1

o=

111 2k-m
(r+m—-B+1DI(n—2k-m—-r+1)

| X—ay.

| = “2(5=

Which completes the prove

=F(n—2k+1)<b_a

m=n-— 2k,

(_ 1)r+n—2k—m

m<n—2k.

5. Description of the Method

The considered method has two steps, the firstistegping
the direct way to approximate the time fractionattpthe
diffusion equation will be system of space fractibordinary
differential equations formula (17), the second s& using
the shifted Chebyshev polynomials to approximate th
unknown functions then, furmula(17) yield the systef
algebraic equation formula (22) with unknown cazéfints.
Using the spectral method with the weighted redidua
(collocation method) to find the unknown coeffidien

Consider the space-time fractional diffusion equati

a B
6;Lt(;c,t)_6u(xt)+ (xt) : 0<a§1<‘8S2’

0<x<L 0<t<T, respect to initial and boundary
condition
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I.C u(x,0)=f(x); 0<x<IL,
B.Cu(0,t) =u(L,t)=0; 0<t<T, fW R (o €Y = 0
To solve S-TFPDE, and it is clearly to show that ()R (30, C7) = 0, (20)
u* =u(x,t),k=01,-,M—1,1<MEN, is the b
numerical function at time-stey, = kAt, At = —. where x;,i = 0,1,---,N — 1, are the collocation points of
M Chebyshive which are given in eq(12), from the migén of

The direct finite diff thod for Capsit
e direct way (finite difference method for Capsito weighted function” (x) one gets

fractional derivatives) is
Rn (%, C*) = M[ug (x)] — G[g"*(x)], or

k
Dl ) 0 ) by (W =) + 0, Muf ()] = Glg* ()]
=0

(21)

Now from equations (17), (18), and eq(21) one eavrites

0<a<l, the formulas (17) as
k-1 n n
“Dffu+t = w[z (bj1 — bur™ +uk*t — b Z CHiTr(x) = Z CE(wDf +1 - b)T; (x)
j=0 r=0 r=0
bj=(+ D=0 = o AR T - bR @] @22
n
for all x € [0,L], g* = u(x, t;), so that one can rewrite the .
S-TFPDE eq(1) by using the approximation of tinafional +Z CPBETY () + g7 (%)
as =0
wkt(x) = (wDf + 1 — bF)uk(x) From definition of residual eq(21) and the colozatpoints
k-1 . eq(12), one can obtain a linear system of algelgqi@tions
+ Z(bf‘ = by uk (x) in the unknowns{Cx*1}"_, in the form
=1 17)
+ b () A'CH* = b, where ACY = F. 23
+wgk(x) Where the right hand side is defined explicitly in terms

of known data in the previous time levels.
In general the idea of the Spectral Method(SM),76,is

finding the trial approximation for the unknown fions b=ACK+ Yk} HIcK7 +yc?+6x1(x), (24)
u*(x), by using known basis and assuming this unknown
functions equal finite sum of this basis,(in thagppr, shifted

k+1
Chebyshev polynomials have been used), as Co
i = |G k=01,,€N,
uk(x) = ¥, CkT} (x), wherene N,n>1, (18) 7 : ’ SR
| C

Wherek =0,1,--,M—1,1< M €N,
it is well known formula (17) can be written ag[uk (x)] = [wg(xo)
G[g"*(x)],where ((x,t;) € D, and M denoted an operator
which maps set of the functions U into set of Gu&. € U, :
g¥ € G and D is the prescribed domain, since the lwg (x,)
approximate solutions given in eq(18) will be riatdeneral)

k+1

Gk+1l = wg:(xl) k=01,-,€N.

satisfy (1) exactly, then we define the residBatx, C¥) as (bf = bEDTs(xg) (b = bfi)Ti (g) - (bf = biy)Ty (xo)
fy ( ) % gtx ) HI = [(qu - bjf)-[i-l)Tg(xl) (qu - bﬁi—l)Tl*(xl) (qu - bﬁi—l)TT:(xl)|
R, (x,C*) = M[uf ()] — G[g* ()], 19 l 5 s s ; |
n(6 C7) = Mluy (o] — Glg™(x)] 19) b - bEoTse) GF =BT = O - BT ()]
The residual depended on the coefficietits * " R
Now the problem is, how one can find (n+1) coeffits ;(l(xo) ;1*(%) ;’i(x")
Ck in equation (19), to find the solutions in equa(i8)? A =0 (,xl) 1 (,xl) o "(_xl) ,
The answer of this question is, by using the weight L L N
residual method. ToCe) TiGe) - Ta(xn)
Weighted Residuals Methods (WRM)[4,5], in this method c-1° £(x)
one has many ways to define weighted function otoD CO f(xo)
make the weighted integral on the D equal zerdhimwork  C° =|7'] , F = .
the collocation method is used, C )
1 at the collocation points n f Cen)

Defined W(x) = {
one can write

, how
0 otherwise }
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(wDETy + Ty — bET;) (%)
(wDETy + Ty — bET) (xy) |

(wDETg + Tg — bT) (%)
A= | (wDE T + Tg — bFTs) (xy)

L(@DET; + T3 — beT) () (DT, + T — beT) ()]

we can calculate the starting vectdt® , from the initial
condition as

Sinceu(0,x) = u°(x) = f(x), for all x € [0,1],
then

A*CO =F. (25)

6. Numerical Examples

Example with known exact solution is considerede
example is chosen such that the behavior of thatisal has
different characterizations with space ande ranging from
polynomial, sinusoidal and exponentially decay. time
calculations, the explitffinite difference methods iused to
approximate the fractional time derivative and olgd a
fractional boundary value problem along every tievel. The
sdution of the fractional boundary value probler appro
ximated by a truncated shifted Chebys polynomials
uk(x) = ¥"_,CkT} (x), as a trial solution in the collocatit
method with the collocation points; = cos (%) VJ =
0,1,---,n. Also,three graphs have been introduced, in the
B = 2 and different values o& (0.6, 0.7, 0.9 and 1.0), in tl
secondgB = 1.5 and different values o ( 0.6, 0.7, 0.9 and
1.0), and in the third groug = 1 and different values ¢

(1.6,1.7,1.9 and 2.0).
Moreover, tables introducevdhich contail the values of the

coefficientsof the shifted Chebyshev PolynomiC‘Q‘ﬁ (k is
the time levelT, « is the order of time derivative arg is

Shukur:The Line Mehod Combined with Spectral Chebyshev for S-Time Fractional

Equation

the order of the space derivati The coefficients are
determined along each time step by solving a lisgatem o
equations in the form defined in (2

Example

Consider the S-TFPDE

Df‘u(x,t)—Dfu(x,t) =g(xt), 0 <a<1<p<2
0<t<1and0< x< 1, where

aTm

g(x,t) = sin(nx) Ae t — et (n“ sin (xn + 7)),

A = (—1)* , Subject to the boundary conditic

u(0,t) = u(1,t) = 0, and the initial conditiol

u(x,0) =sin (mx), 0 < x < 1,whose exact solution is
u(x, t) = e *sin (mx).

Solutions

Consider a trial solution of the fo

4
wh = > CHT () = CET00 + CRTF () + -+
r=0

C6Te (O+C7T7 (),

Now for the first initial solutioru®(x) one can calculate it
from the initial condition by

u*(x;) = u®(x;) = u(x;, 0) = sin(mx),

i=0,1,2,--,7; where x; = 0.5 * cos (%) + 0.5, solve
[T1IC,1° = [f(x))], wherer,i=0,1,--,7.
The results of the solution of this emple, By helping of

Matlab are given in thdollowing figures(1-3) and tables
(1-3).

the exact softion and the method of lines with Chebyshey bases at different orders; tau=000001; (h=0 025 1=001)

T T T T ] T T
exact
1= F______.s al=0.6;he=2
= 5 g = al=t.7;he=2
/Q/Q g % S I al-08:he-2
o a4 al-1.0;he-2
os}- >, ~ ® =
® a
i
B fractional aifad beta=2 =
- 05 % [ e N, homs 1
= S L t= 001 for
5 /% L ‘ ., plotting
D4l /?5 , ¥ i ¥ —
! | closed with exact N
N ° alfa=1; be=2 .
&
02 /'; "\:‘ .
o /:. | | | 1 | [ | | | \\a
1] 0 02 03 04 06 07 0& 0g 1

05
x

Figure 1. the exact solution and the numerical solution at different orders of o with fixed =2, (At = 0.0001,n = 7), h=0.0125, t = 0.01.

Table 1. ( At = 0.0001,n = 7).

Clo2 Cir2 Cioyz Ci2 c? Col-point Eg

0.444765568 0.43463187 0.4452642 0.47192077 0.472001216 1 EQ6 0.075113082
0.049301693 0.02090821 0.0037329 0.00163802 0 0.95048443 EX7 0.062036656
-0.501748138 -0.46944618 -0.4715055 -0.49914043 -0.49940326 0.81174490 EQ° 0.046401034
-0.005010121 -0.00183968 -3.05E04 -1.33E-04 0 0.61126046 E} 0.009662424
2.69E-02 2.60E-02 2.64E02 3E-02 0.027992033 0.38873953

-3.49E-15 -2.08E-15 -3.15E1€ -3.08E-16 0 0.18825509

-7.25E-04 -6.07E-04 -5.66E04 -5.94E-04 -0.000589991 0.04951556

-3.42E-16 -4.11E-16 -5.33E1€ -4.96E-16 0 0
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the exact soltion and the method of lines with Chebyshev bases at different orders; taw=0.0001; (h=0.025 t=0.01)
T T T T T T T T = —
1 H ehanging in order of fractional space .o al0.6.be=15
no more changing in the results s al=0.6 be=15
because no memory in fractional space - ‘|'___a a:-a.s:beni 5
i J P -+~ ’ 3
NS . o S T
o /9/2 _\b& | 1:5 ~0.0001
L ';\p U UN h=0.025
\\ . v fractional alfa& beata=15 1= 0.01 for
= DB -« ® | L :\ plotiing i1
s P AN
5 P | N
D4l Ve i Y LA o
- losed with t
i [ e "
o % N
/6 %
o ° | | | 1 [ 1 1 1 b\\
1] [ 0.2 0.3 04 x 08 06 a7 [T 02 1
Figure 2. the exact solution and the numerical solution at different orders of o with fixed p=1.5, ( At = 0.0001,n = 7), h=0.0125, t = 0.01
Table 2. thisresultsat( At = 0.0001,n = 7).
Clis Cliz Clio Clz c; Col-point Eg
0.448967636 0.42975713 0.4420263 0.47001453 0.472001216 1 Ele 0.007824117
0.018023305 0.01056324 0.0027231 0.00132116 0 0.95048443 El, 0.008498308
-0.508631601 -0.47086169 -0.4712240 -0.49893334 -0.49940326 0.81174490 El, 0.008526541
7.24E-04 3.84E-05 -9.21E05 -5.58E-05 0 0.61126046 E} 0.008457197
2.83E-02 2.64E-02 2.64E02 3E-02 0.027992033 0.38873953
-5.61E-04 -3.80E-05 -3.80E0O5 -1.64E-05 0 0.18825509
-4.60E-04 -5.20E—04 -5.20E04 -5.73E-04 -0.000589991 0.04951556
-1.65E-04 -2.06E-05 -2.06E05 -9.31E-06 0 0
the exact soltion and the method of lines with Chebyshev bases at different orders; tau=0.0001; (h=0.025,=0.01)
T T T T T T T T st
1+ changing in order of fractional space o T R o al=1he=18H
no more changing in the results i T """--.\ £ oal=The=17
because no memory in fractional space / T '\,\( % al=The=19
by R, al=1:be=2.0
08+ ¥ \ =
/ \ 18 ~0.0001
o ~ =001
5 i = t=0.01 for
it /x fractional beta; alfa& =1 \ plotiing 1]
: ; / closed with exact \
H / alfa=1; be=2 '\
o SO T
oz /’ \ _
U.,/J \ | | | \ \ | | \ \
i 041 02 0.3 0.4 X 08 0.6 07 0.5 0.8 1
Figure 3. the exact solution and the numerical solution at different orders of g with fixed a =1 ,( At = 0.0001,n = 7), h=0.0125, At = 0.01
Table 3. ( At = 0.0001,n = 7).
Csas Cosas Cooas Cooas cy Col-point Ej
0.470306567 0.47093563 0.4709492 0.47112135 0.472001216 1 EQS 0.049847529
0.00147331 1.60E-04 3.29E04 1.48E-0.4 0 0.95048443 EQ¢ 0.062972866
-0.498956198 -0.49907929 -0.4990871 -0.49883192 -0.49940326 0.81174490 EQS 0.049849099
-8.17E-05 1.46E-0.4 2.09E0.4 -6.75E-06 0 0.61126046 EQS 0.007492913
2.80E-02 2.79E-0.2 2.78E90.2 3E-02 0.027992033 0.38873953
-2.93E-05 8.94E-05 1.81E04 -3.40E-08 0 0.18825509
-5.60E-04 -6.72E-0.4 -7.66E04 -5.90E-04 -0.000589991 0.04951556
-1.56E-05 4.00E-0.5 8.75E0E -1.49E-07 0 0

7. Discussion and Conclusior

It is known that many differential equations cansoéved
by using the WRM. The collocation method is the [dest

method among the WRM. Tladficiency of using this methc
depends on the selection of the collocation poiThe
treatment depends on transforming the time depéi
parabolic FPDE into a family of fractional boundargiue
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problems along time levels with the help of theitéin [3]
difference method. the shifted Chebyshev polyncsnidilthe

first kind is used as the bases function of tha solution, and

the Gauss Lobatto points are used as the collocatints.,
thus the problem is transformed to one of solvingl@ebraic  [4]
linear systems in the coefficients of the basesctfans
included in the trial solution. Thus an expligiproximation

is obtained for the solution along each time lewdlich
enables to approximate the solution at any poiohglthis [5]
time level not only at some grid points as in tleitd
difference. Although the algebraic system is deimsehis
treatment in comparison with those obtained with finite
difference method the number of equations is nadtivery
small. From the graphs one can see that this tegdtm
performs more efficiently in the integer case (esftactional
orders of the derivatives approaches the classiteger case
as the approximate solution approach the exactisnju [7]

(6]
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