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Abstract: Despite the availability of measles vaccine since 1963, the infectious disease is still endemic in many parts of the 

world including developed nations. Elimination of measles requires maintaining the effective reproduction number less than 

unity, Re <1 as well as achieving low levels of susceptibility. Infectious diseases are great field for mathematical modeling, and 

for connecting mathematical models to primary or secondary data. In this project, we concentrated on the mathematical model 

for control and elimination of transmission dynamics of measles. We have obtained disease free equilibrium (DFE) point, 

effective reproduction number and basic reproduction number for the model. Simulations of different variables of the model have 

been performed and sensitivity analysis of different embedded parameters has been done. MATLAB has been used in simulations 

of the ordinary differential equations (ODEs) as well as the reproduction numbers. 
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1. General Introduction 

In this section we discussed general description of measles, 

statement of the problem, objectives of the project, project 

questions and significance of the project. 

1.1. General Description of Measles 

In this section we discussed background of measles, symptoms 

of measles, transmission of measles, treatment of measles, 

immunization of measles and the current situation of measles. 

1.1.1. Background of Measles 

Measles (also called rubeola) is a highly contagious viral 

infection that can be found around the world through 

person-to-person transmission mode, with over 90% attack rate 

among susceptible persons. It is the first worth eruptive fever 

occurring during childhood. The measles virus is a 

paramyxovirus, genus morbillivirus. Even though an effective 

vaccine is available and widely used, measles continues to occur 

even in developed countries. Children under five years are most 

at risk. Measles infects about 30 to 40 million children each year 

and causing mortality of over one million often from 

complication related to pneumonia, diarrhea and malnutrition [2]. 

One of the earliest written descriptions of measles as a disease 

was provided by an Arab physician in the 9
th
 century who 

described differences between measles and smallpox in his 

medical notes. A Scottish physician, Francis Home, 

demonstrated in 1757 that measles was caused by an infectious 

agent present in the blood of patients. In 1954 the virus that 

causes measles was isolated in Boston, Massachusetts, by John F. 

Enders and Thomas C. Peebles. Before measles vaccine, nearly 

all children got measles by the time they were 15 years of age [3]. 

1.1.2. Symptoms of Measles 

The main symptoms of measles are fever, runny nose, 

cough and a rash all over the body, it also produces 

characteristics-red rash and can lead to serious and fatal 

complications including pneumonia, diarrhea and encephalitis. 

Many infected children subsequently suffer blindness, 

deafness or impaired vision. Measles confer lifelong 

immunity from further attacks [1]. 

1.1.3. Transmission of Measles 

Measles is a highly contagious virus that lives in the nose and 

throat mucus of an infected person. It can spread to others 
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through coughing and sneezing. Also, measles virus can live for 

up to two hours in an airspace where the infected person 

coughed or sneezed. If other people breathe the contaminated 

air or touch the infected surface, then touch their eyes, noses, or 

mouths, they can become infected. Measles is so contagious 

that if one person has it, 90% of the people close to that person 

who are not immune will also become infected. Infected people 

can spread measles to others from four days before through four 

days after the rash appears. Measles is a disease of humans; 

measles virus is not spread by any other animal species. 

1.1.4. Treatment of Measles 

There is no specific treatment for measles. People with 

measles need bed rest, fluids, and control of fever. Patients with 

complications may need treatment specific to their problem. 

1.1.5. Immunization of Measles 

There are two doses for measles vaccine, the first dose of 

Measles Mumps-Rubella (MMR) should be given on or after 

the child’s first birthday; the recommended age range is from 

12–15 months. A dose given before 12 months of age will not 

be counted, so the child’s medical appointment should be 

scheduled with this in mind. The second dose is usually given 

when the child is 4–6 years old, or before he or she enters 

kindergarten or first grade. However, the second dose can be 

given earlier as long as there has been an interval of at least 28 

days since the first dose. The first dose of MMR produces 

immunity to measles in 90% to 95% of recipients. The second 

dose of MMR is intended to produce immunity in those who did 

not respond to the first dose, but a very small percentage of 

people may not be protected even after a second dose. Anyone 

who had a severe allergic reaction (e.g., generalized hives, 

swelling of the lips, tongue, or throat, difficulty breathing) 

following the first dose of MMR should not receive a second 

dose. Anyone knowing they are allergic to an MMR component 

(e.g., gelatin, neomycin) should not receive this vaccine. As 

with all live virus vaccines, women known to be pregnant 

should not receive the MMR vaccine, and pregnancy should be 

avoided for four weeks following vaccination with MMR. 

Children and other household contacts of pregnant women 

should be vaccinated according to the recommended schedule. 

Women who are breastfeeding can be vaccinated. Severely 

immuno- compromised people should not be given MMR 

vaccine. This includes people with conditions such as 

congenital immunodeficiency, AIDS, leukemia, lymphoma, 

generalized malignancy, and those receiving treatment for 

cancer with drugs, radiation, or large doses of corticosteroids. 

Household contacts of immunocompromised people should be 

vaccinated according to the recommended schedule. Although 

people with AIDS or HIV infection with signs of serious 

immunosuppression should not be given MMR, people with 

HIV infection that do not have laboratory evidence of severe 

immunosuppression can and should be vaccinated against 

measles. 

1.1.6. Current Situation of the Disease 

Each year in the United States about 450-500 people died 

because of measles, 48,000 were hospitalized, 7,000 had 

seizures, and about 1,000 suffered permanent brain damage 

or deafness. Today there are only about 60 cases a year 

reported in the United States, and most of these originate 

outside the country. For 65 countries with adequate vital 

registration data (≥85% of estimated deaths of children 

younger than 5 years registered and coded), they used the 

reported number of measles deaths. These deaths accounted 

for less than 0.01% of global measles mortality, according 

to vital registration data and estimated mortality [3]. For 

128 remaining countries with inadequate vital Registration 

data, WHO estimated country-specific measles deaths 

through a three-step process. WHO estimated annual 

measles incidence on the basis of reported measles cases for 

each country, then WHO distributed estimated incidence 

across age groups, and finally WHO calculated the number 

of deaths in each age class by applying age-specific and 

country-specific measles Case-Fatality Ratios (CFRs). 

Measles cases and vaccination coverage are reported 

annually to WHO by all member states through the WHO/ 

UNICEF Joint Reporting Form [4]. WHO derived coverage 

estimates for the first routine dose of Measles-Containing 

Vaccine (MCV1) from reported coverage data and survey 

results by use of computational logic [5]. Measles cases 

reported through surveillance systems typically represent a 

fraction of the true number of cases because many children 

do not present for medical attention and when medical care 

is sought, cases can be misdiagnosed or not reported to 

central authorities [6]. 

1.2. Statement of the Problem 

Despite the availability of the measles vaccine since 1963, 

the infectious disease is still endemic in many parts of the world 

including developed nations. The disease has continued causing 

both economic and health problems to large population 

worldwide mostly affecting children. Due to these impacts, this 

study aims to develop a mathematical model for control and 

elimination of the transmission dynamics of measles. 

1.3. Objectives of the Project 

1.3.1. Main Objective of the Project 

The main objective of this project is to develop a 

mathematical model for control and elimination of the 

transmission dynamics of measles. 

1.3.2. Specific Objectives of the Project 

This project intends to achieve the following specific 

objectives: 

i. Formulate a mathematical model for control and 

elimination of the transmission dynamics of measles. 

ii. To obtain the disease free equilibrium (DFE) point. 

iii. To obtain and analyze the effective reproduction number 

and basic reproduction number. 

iv. To perform sensitivity analysis of each parameter 

involved in the model. 

v. To perform simulation of the mathematical model. 
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1.4. Project Questions 

Important questions about control and elimination of the 

transmission dynamics of measles to be answered by this 

project are: 

i. Can a mathematical model for control and elimination of 

the transmission dynamics of measles be formulated? 

ii. Does the disease free equilibrium (DFE) point for the 

model exist? 

iii. Do the effective reproduction number and basic 

reproduction number for the model exist? 

iv. How sensitive is each embedded parameter? 

v. Can measles be eliminated from a population? 

1.5. Significance of the Project 

The significances of this project are as follows: 

i. The analysis of dynamics of measles transmission can 

be used to predict measles outbreak before it occurs. 

ii. The government and health organizations can use 

findings of this project to plan vaccination programmes 

and hence prevent future measles outbreak. 

iii. The public will participate in vaccination programmes 

because they will be aware of how it is best way to 

protect future measles outbreaks. 

iv. This project will contribute to improve future studies of 

measles mathematical modeling. 

v. Detailed explanation of transmission of measles 

between different groups in a population and sensitivity 

analysis of each parameter can help to control measles 

outbreak when it occurs. 

2. Literature Review 

In this section we review in brief mathematical models of 

measles developed previously. Mathematical models have a 

long history of been used by different goverments and 

organisations in the world in controlling and elimination 

strategies of infectious diseases. The following are some of 

mathematical models developed to study transimission 

dynamics of measles using different approaches: 

[15] Developed a mathematical model for control of measles 

epidemiology. They used SEIR model to determine the impact 

of exposed individuals at latent period through the stability 

analysis and numerical simulation. 

[16] Discussed modeling the effects of vaccination on the 

transmission dynamics of measles. In their study they divided 

the total population into five classes that is they used SEIR 

model and added the class of passively immune infants. In 

their study they tried to predict an optimal vaccine coverage 

level needed to control the spread of measles. 

[10] Developed a mathematical model to the impact of the 

Measles Control Campaign (MCC) on the potential for 

measles transmission in Australia. They divided the population 

into five age groups and they used serosurvey results and 

vaccine coverage estimates to calculate the change in Basic 

Reproductive Number after measles control campaign (MCC). 

Their study realized that the Australian MCC had a significant 

impact on the transmission dynamics of measles and sustained 

efforts are required to improve coverage of two doses of MMR 

and to ensure elimination of indigenous measles transmission. 

[7] Developed a mathematical model for measles epidemics 

in Ireland. The aim of her study was to establish a 

mathematical model for measles epidemics and to predict the 

levels of vaccination coverage required in Ireland in order to 

eradicate the disease. 

[13] Studied the modeling and simulation of the dynamics 

of the transmission of measles. They used SEIR model to 

discuss dynamics of measles infection and address the stability 

and disease free and endemic equilibrium. The impact of 

vaccination in the control and elimination of measles was not 

discussed in their study. 

[19] Based on the dynamical analysis of a new model for 

measles infection. His study used SEIR model modified by 

adding vaccinated compartment. His model determined the 

required vaccination coverage and dosage that will guarantee 

eradication of measles within a population. 

[11] Performed a study in the modeling measles 

re-emergence as a result of waning of immunity in vaccinated 

populations. They developed an age structured mathematical 

model for measles transmission in vaccinated population. One 

of the principal insights gained from their model is that waning 

of immunity and subsequent mild subclinical infection in 

vaccines would not necessarily result in a rapid re-emergence 

of measles, but that the re-emergence is realistic and 

essentially depends on parameters for which no good estimates 

exist. 

[17] Performed a study on mathematical modeling on the 

control of measles by vaccination. In their study SEIR model 

was used to show control of measles by vaccination. Their 

study recommended introduction of mass vaccination 

programme and improvement in early detection of measles 

cases to minimize transmission. 

[9] Performed a study on predicting and preventing measles 

epidemics in New Zealand: application of mathematical model. 

In their study they used a deterministic SIR to model the 

dynamics of measles under varying immunization strategies in 

a population with size and age structure. The model 

successfully predicted an epidemic in 1997 and was 

instrumental in the decision to carry out an intensive MMR 

(measles, mumps and rubella) immunization campaign in that 

year in New Zealand. 

[12] Developed a mathematical model for control of measles 

by vaccination. In their study they used SEIR model to study 

the population. Their results rely upon locally stability of the 

disease-free equilibrium point. They studied the local stability 

of endemic equilibrium by linearization, Jacobian matrix and 

Routh-Hurwitz theorem. These techniques were not suitable to 

know if the free-disease equilibrium point is globally stable; in 

such case, the disease can be eradicated irrespective the initial 

sizes of the compartment, as encountered in the real situation. 

Another limitation they realized is the lack of success when 

prospecting global stability for SEIR epidemiological models 

with non-constant population. 

[18] Performed a mathematical model of measles with 
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vaccination and two phases of infectiousness. They followed the 

SIR modeling approach hence they partitioned the total 

population is into Susceptible, Infectious and Recovered 

compartments. Their study realized that the disease will certainly 

be eliminated if all susceptible are vaccinated. Achieving a 100% 

vaccination coverage is impractical but if the goal is set to 100% 

then we just might hit the ≥94% vaccine coverage which is the 

herd immunity for measles. Since measles is predominantly 

found among children aged 5 years and below, they therefore 

suggested that the measles vaccine should be made compulsory 

such that no child is allowed to enter school without evidence of 

at least two dose measles vaccination. 

[14] Developed a mathematical model for the study of 

measles in Cape Coast Metropolis. They used SEIR model to 

describe the transmission dynamics of measles. The model has 

shown success in attempting to predict the causes of measles 

transmission within a population. The model strongly indicated 

that the spread of a disease largely depend on the contact rates 

with infected individuals within a population. Their study also 

realized that if the proportion of the population that is immune 

exceeds the herd immunity level for the disease, then the disease 

can no longer persist in the population. Thus if this level can be 

exceeded by mass vaccination, then the disease can be under 

control. The model also pointed out that early detection has a 

positive impact on the reduction of measles transmission that is 

there is a need to detect new cases as early as possible so as to 

provide early treatment for the disease. More people should be 

educated in order to create awareness to the disease transmission 

so that society will be aware of this deadly disease. 

[20] Performed a study on controlling measles using 

supplemental immunization activities: a mathematical 

model to inform optimal policy. They developed DynaMICE 

(Dynamic Measles Immunization Calculation Engine), an 

age-stratified model of measles infection transmission in 

vaccinated and unvaccinated individuals. The population in 

the model can be susceptible to measles, infected with 

measles or recovered from measles (and hence have lifelong 

immunity) that is SIR model. In their study, the rate at which 

infection occurs in the susceptible population depends on the 

existing proportion of the population that is already infected, 

as well as the effective contact rate between different age 

groups. Individuals age discretely, in one-year increments, at 

the end of each year [22], between 0 and 100 years old. 

Furthermore, both numerical simulation and mathematical 

analysis indicated that a single Supplemental Immunization 

Activity (SIA) will not control measles outbreaks in any of 

the countries with high burden of measles. However, regular 

Supplemental Immunization Activities (SIAs) at high 

coverage are able to control measles transmission, with the 

periodicity of SIA campaigns determined by population 

demo-graphics and existing MCV1 coverage. 

3. Model Formulation and Analysis 

3.1. Description of the Compartmental Mathematical Model 

In this section a deterministic, compartmental mathematical 

model to describe the transmission dynamics of measles is 

formulated. It is assumed that the population is 

homogeneously mixing and reflects increasing dynamics such 

as birth and immigration, Per Capita birth rate is time constant, 

Per Capita natural mortality rate is time constant, individual 

can be infected through direct contact with an infectious 

individual, on recovery the individual obtains permanent 

infection-acquired immunity that is an individual cannot be 

infected again by measles and individual who has attended 

first and second dose of vaccine consecutively receive 

permanent immunity to measles. 

The total population (N) is divided into the following 

epidemiological classes: Susceptible, S (Individuals who 

may get the disease); Exposed or Latent, E (Individuals 

who are exposed to the disease); Infected, I (Individuals 

who have the disease and are able to transfer it to others); 

Recovered, R (Individuals who have permanent 

infection-acquired immunity and those who received the 

second dose of vaccine) and Vaccinated, V (Individuals who 

have received first dose of vaccine). It is assumed that 

proportions ϕ of newborns and ρ of immigrants receive first 

dose of vaccine and join the Vaccinated class, V at rates π 

and Λ respectively. While the compliments 1-ϕ and 1-ρ join 

the susceptible class, S at the same rates. Susceptible 

individuals may be vaccinated at the rate ε and join the 

Vaccinated class, V. If there is an adequate contact of a 

Susceptible individual with an Infective individual then 

transmission may occur, thus the susceptible individuals 

may join the Exposed class, E at the rate λ. When Latent 

period ends, exposed individuals may progress to the 

Infectious class, I at rate σ. After some treatment, infectious 

individuals may recover and join the recovery class, R at 

rate η. Since the disease is fatal, infected individuals may 

die due to the disease at the rate δ or die naturally at rate µ. 

The recovery class, R consists of those with permanent 

infection-acquired immunity and those who received the 

second dose of vaccine, ω. We assume that first vaccine 

does not confer lifelong immunity, it wanes with time at the 

rate α, therefore a proportion θ of first dose vaccinated 

individuals who receive second vaccine may be conferred 

permanent immunity whereas the compliment (1- θ) who 

may skip second vaccination become susceptible to the 

disease at the rate α. Basically our new model is an ����� 

model. 

3.2. Description of Variables and Parameters 

The following tables describe the variables and parameters 

used in this model: 

Table 1. Variables used in the model. 

Variable Description 

S The number of Susceptible individuals at time t 

E The number of Exposed individuals at time t 

I The number of Infected individuals at time t 

R The number of Recovered individuals at time t 

V The number of Vaccinated individuals at time t 

N The total population at time t 
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Table 2. Parameters used in the model . 

Parameter Description 

π Per Capita birth rate 

Λ Constant Immigration rate 

ϕ Proportions of newborns who are vaccinated 

1-ϕ Proportion of newborns who are not vaccinated 

ρ Proportions of immigrants who are vaccinated 

1-ρ Proportion of immigrants who are not vaccinated 

a Arrival rate 

c Per Capita contact rate 

δ Death due to disease 

µ Per Capita natural mortality rate 

β Probability of one infected individual to become infectious 

λ Force of infection, λ=
���

	
 

σ Progression rate from latent to infectious 

η Recovery rate of treated infectious individuals 

α The rate of waning of first dose of vaccine 

ω The rate of receiving second dose of vaccine 

ε Proportion of individuals who received a first vaccination 

θ Proportion of individuals who are vaccinated twice 

1-θ Proportion of individuals who are not vaccinated twice 

3.3. Compartmental Diagram 

The description of measles dynamics can be summarized by 

compartmental diagram below: 

 
Figure 1. Compartmental Diagram for a Mathematical Model for Control 

and Elimination of the Transmission Dynamics of Measles. 

3.4. Differential Equations 

From the above explanation and compartmental diagram 

Figure 1, the transition between compartments can now be 

expressed by the following differential equations: 

(1 ) (1 ) (1 ) ( )
dS

N V S
dt

φ π ρ θ α λ ε µ= − + − Λ + − − + +   (1) 

((1 ) )
dV

N S V
dt

φπ ρ ε θ α ωθ µ= + Λ+ − − + +    (2) 

( )
dE

S E
dt

λ σ µ= − +              (3) 

( )
dI

E I
dt

σ η µ δ= − + +          (4) 

dR
I V R

dt
η ωθ µ= + −            (5) 

Where  λ is the force of infection given by; 

cI

N

β
λ =                      (6) 

The total population size is: 

N S V E I R= + + + +

 
Where by adding the system of equations (6-10) we get: 

( )             

dN dS dV dE dI dR

dt dt dt dt dt dt
dN

N
dt

π µ

= + + + +

= Λ+ −

      (7) 

3.5. Basic Properties of the Model 

3.5.1. Dimensionless Transformation 

We use the same approach as by [26, 27, 28, 29, 30] of 

scaling the population of each class by the total population in 

order to simplify the analysis. In classes �, �, �, � �
� � we 

transform as follows: 

� =
�

�
, � =

�

�
, � =

�

�
, � =

�

�
, � =

�

�
 

Hence the normalized model system becomes: 

(1 ) (1 ) (1 ) ( )
ds

a v s
dt

φ π ρ θ α λ ε µ= − + − + − − + +   (8) 

((1 ) )
dv

a s v
dt

φπ ρ ε θ α ωθ µ= + + − − + +    (9) 

( )
de

s e
dt

λ σ µ= − +              (10) 

( )
di

e i
dt

σ η µ δ= − + +           (11) 

dr
i v r

dt
η ωθ µ= + −             (12) 

where a
N

Λ
=  

Where by adding the system of equations (8-12) we get: 

( )
ds dv de di dr

a
dt dt dt dt dt

π µ+ + + + = + −      (13) 

3.5.2. Positivity of Solution 

Here we show that all state variables remain non-negative 
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since they represent human population. Let T be a 

non-negative region in ℝ� ; � = {(�, �, �, �, �) ∈ ℝ�
� ; �(0) >

0, �(0) > 0, �(0) > 0, �(0) > 0, �(0) > 0}. 

We show that the solution of {�("), �("), �("), �("), �(")} 

from the system of equations (8-12) are positive for all t≥0. 

For 

(1 ) (1 ) (1 ) ( )

(1 ) (1 ) ( )

ds
a v s

dt
ds

a s
dt

φ π ρ θ α λ ε µ

φ π ρ λ ε µ

= − + − + − − + +

≥ − + − − + +

 

Solving the above equation we obtain 

( )((1 ) (1 ) )
( ) e

( )
as   ( ) 0

ta
s t C

t s t

λ ε µφ π ρ

λ ε µ

− + +− + −
≥ +

+ +
→∞ ≥

 

For 

((1 ) )
dv

a s v
dt

φπ ρ ε θ α ωθ µ= + + − − + +  

((1 ) )
dv

a v
dt

φπ ρ θ α ωθ µ≥ + − − + +  

Solving the above equation we obtain 

[(1 ) ]( )
( ) e

((1 ) )
as   ( ) 0

ta
v t C

t v t

θ α ωθ µφπ ρ

θ α ωθ µ

− − + ++
≥ +

− + +
→ ∞ ≥

 

For 

( )
de

s e
dt

λ σ µ= − +  

( )
de

e
dt

σ µ≥− +  

Solving the above equation we obtain 

( )( ) e

as   ( ) 0

C te t

t e t

σ µ− +≥

→∞ ≥
 

For 

( ( ))

( ))

di
e i

dt
di

i
dt

σ η µ δ

η µ δ

= − + +

≥− + +

 

Solving the above equation we obtain 

[ ( )]( ) e

as   ( ) 0

C ti t

t i t

η µ δ− + +≥

→∞ ≥
 

For 

dr
i v r

dt
η ωθ µ= + −  

dr
r

dt
µ≥−  

Solving the above equation we obtain 

( ) e

as   ( ) 0

Cr t

t r t

µ−≥

→∞ ≥
 

3.5.3. Invariant Region 

All state variables remain non-negative all the time because 

this study is based on human population. Therefore the system 

of equations (8-12) in the region T is restricted to a 

non-negative condition. 

where 

� = {(�, �, �, �, �) ∈ ℝ�
� ; � > 0, � > 0, � > 0, � > 0, � > 0,

> 0, � + � + � + � + � ≤ 1} 

The model makes biological sense where the feasible region 

is positively invariant. 

3.6. Model Analysis 

The system of equations (8-12) is analyzed qualitatively to 

give better understanding of the impact of vaccination on the 

control and elimination of the transmission dynamics of 

measles. 

3.6.1. Disease Free Equilibrium (DFE) 

The disease free equilibrium of the model system (8-12) is 

obtained by setting; 

��

�"
=

��

�"
=

��

�"
=

��

�"
=

��

�"
= 0 

In case there is no disease � = � = 0 so �&
∗, �&

∗�
��&
∗ will be 

the proportions of susceptible, vaccinated and recovered in 

this case. 

that is 

* *

0 0
(1 ) (1 ) (1 ) ( ) 0a v sφ π ρ θ α ε µ− + − + − − + =  (14) 

* *

0 0
[(1 ) ] 0a s vφπ ρ ε θ α ωθ µ+ + − − + + =  (15) 

* *

0 0
0v rωθ µ− =     (16) 

and on solving equations (14-16) we get the ()�  of the 

system (8-12) which is given by: 

*&(�∗, �∗, �∗, �∗, �∗) = (�&
∗, �&

∗, 0,0, �&
∗). 

where �&
∗, �&,

∗ �& 
∗ are given by equations (17-19). 

It can also be verified that DFE is locally asymptotically 

stable when �+ < 1. 
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*

0

[(1 ) ][(1 ) (1 ) ] (1 ) [ ]

( )[(1 ) ] (1 )

a a
s

θ α ωθ µ φ π ρ θ α φπ ρ

ε µ θ α ωθ µ θ αε

− + + − + − + − +
=

+ − + + − −
               (17) 

*

0

[(1 ) (1 ) ] ( )[ ]

( )[(1 ) (1 ) ] (1 )

a a
v

a

ε φ π ρ λ ε µ φπ ρ

ε µ φ π ρ θ εα

− + − + + + +
=

+ − + − − −
                            (18) 

*

0

[(1 ) (1 ) ] ( )[ ]

( )[(1 ) (1 ) ] (1 )

a a
r

a

ε φ π ρ λ ε µ φπ ρωθ

µ ε µ φ π ρ θ εα

 − + − + + + + =
 + − + − − − 

                        (19) 

It can be verified that �&
∗ + �&

∗ ∗ +�&
∗ = 1. 

3.6.2. The Basic Reproduction Number, R0 

Epidemiologists have always been interested in finding the 

basic reproduction number of an emerging disease because 

this threshold parameter can tell whether a disease will die out 

or persist in a population. Denoted by �&, this parameter is 

arguably the most important quantity in infectious disease 

epidemiology. It is defined as the average number of new 

cases (infections) produced by a single infective when 

introduced into a susceptible population. It is one of the first 

quantities estimated for emerging infectious diseases in 

outbreak situations [24]. It is a key epidemiological quantity, 

because it determines the size and duration of epidemics and is 

an important factor in determining targets for vaccination 

coverage [23]. The basic reproduction number is sought after 

principally because: 

If �& < 1, then throughout the infectious period, each 

infective will produce less than one new infective on the 

average. This in turn implies that the disease will die out as the 

DFE is stable. 

If �& > 1, then throughout the infectious period, each 

infective will produce more than one new infective on the 

average. This in turn implies that the disease will persist as the 

DFE is unstable. In other words, there will be an outbreak. 

If �& can be determined, then the transmission parameters 

which will force �& to be less than or greater than 1 can easily 

be identified and control measures effectively designed. 

Next, we shall find the Basic Reproduction Number of the 

system (8-12) using the next generation method [21]. 

To calculate the basic reproduction number by using a 

next-generation matrix, the whole population is divided 

into 
 compartments in which there are - < 
 infected 

compartments. In our model among five compartments we 

have two infected compartments 

Let ./ , � = 1,2,3, … , -  be the numbers of infected 

individuals in the �34 infected compartment at time t. )/(.) 

be the rate of appearance of new infections in compartment. 

�/(.)  be the difference between rates of transfer of 

individuals between �34 compartments. �/
�(.) be the rate of 

transfer of individuals into �34  compartment by all other 

means. �/
5(.) be the rate of transfer of individuals out of �34 

compartment. 

�./

�"
= )/(.) − �/(.), 7ℎ��� �/(.) = [�/

5(.) − �/
�(.)] 

The above equation can also be written as: 

�./

�"
= )(.) − �(.) 

where )(.) = ();(.), )<(.), … . . , )>(.))? , 

�(.) = (�;(.), �<(.), … . . , �>(.))? 

From equations (10) and (11); 

( )
de

s e
dt

λ σ µ= − +  

[ ( )]
di

e i
dt

σ η µ δ= − + +  

@ = A�B 

we can say from our explanation above that .; = � and 

.< = � 

) = ();, )<)? 

) = (A�B�, 0)? 

� = (�;, �<)? 

� = [(C + D)�, −C� + (E + D + F)�]? 

So we define )/ and �/ as: 

( )
     

0 ( )i i

ics e
F V

e i

β σ µ

σ η µ δ

   +   = =   − + + +        

Let .& be the disease-free equilibrium. The values of the 

Jacobian matrices )(.) and �(.) are: 

We differentiate )/  with respect to � and � and get ): 

0

0

1 1 *

0

2 2

( )
( )

0

0 0

i

j

F x
F DF x

x

F F
cs

e iF
F F

e i

β

∂
= =

∂

 ∂ ∂      ∂ ∂= =   ∂ ∂     
 ∂ ∂   

We differentiate �/ with respect to � and � and get �: 
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0

0

1 1

2 2

( )
( )

( ) 0

( )

i

j

V x
V DV x

x

V V

e iV
V V

e i

σ µ

σ η µ δ

∂
= =

∂

 ∂ ∂   +   ∂ ∂= =   ∂ ∂ − + +     
 ∂ ∂ 

 

We find the inverse of � and get: 

1

1
0

( )
1

( )( ) ( )

V
σ µ

σ

σ µ η µ δ η µ δ

−

 
 
 + =
 
 
 + + + + + 

 

Now, the matrix )�5;  is known as the next-generation 

matrix. The largest eigenvalue or spectral radius )�5; of is 

the effective reproduction number of the model. 

1

1 0 0

*

1 0

* *

0 0
1

( ) ( )

1
0

0 ( )
10 0

( )( ) ( )

            ( )( ) ( )
0 0

i i

j j

F x V x
FV

x x

cs
FV

cs cs

FV

β σ µ

σ

σ µ η µ δ η µ δ

β σ β

σ µ η µ δ η µ δ

−

−

−

−

   ∂ ∂   =    
∂ ∂      

 
    +   =        
 + + + + + 

 
 
 = + + + + + 
 
  

 (20) 

The eigenvalues, @ of equation (20) can be computed from 

the characteristic equation: 

|)�5; − @�| = 0. 

* *

0 0

*

0

0( )( ) ( )
0

0
( )( )

cs cs

cs

β σ β
λ

σ µ η µ δ η µ δ

λ

β σ
λ λ
σ µ η µ δ

−
=+ + + + +

−

   − =  + + +  

 

*

0

1 2
0     and      

( )( )

csβ σ
λ λ

σ µ η µ δ
= =

+ + +
 

The largest eigenvalue is obviously @<  and it becomes 

equal to the effective reproduction number of the model. If we 

substitute �&
∗  from equation (17) we get the effective 

reproduction number denoted by �+  (here all control 

strategies have been considered) equation (21) below: 

{ }
{ }

[(1 ) ][(1 ) (1 ) ] (1 ) [ ]

( )( ) ( )[(1 ) ] (1 )
e

c a a
R

β σ θ α ωθ µ φ π ρ θ α φπ ρ

σ µ η µ δ ε µ θ α ωθ µ θ αε

− + + − + − + − +
=

+ + + + − + + − −
(21) 

When there is no any control strategy, then H = I = J =
K = 0 hence L = 0, M = 0 so we get the basic reproduction 

number denoted by �&  given by equation (22) below: 

0

( )

( )( )

c a
R

β σ π

µ σ µ η δ µ

+
=

+ + +
             (22) 

When vaccination is administered to newborns and 

immigrants only, leaving away Susceptibles individuals, We 

set ε=α=0 and obtain the reproduction number denoted by Re1 

given by the equation (23) below: 

{ }
1

[ ][(1 ) (1 ) ]

( )( )( )e

c a
R

β σ ωθ µ φ π ρ

µ σ µ η µ δ ωθ µ

+ − + −
=

+ + + +
    (23) 

4. Simulation and Discussion 

In this section we employ MATLAB to simulate a 

mathematical model formulated, provide sensitivity analysis 

and discuss the results. 

4.1. Simulation and Discussion 

A mathematical model for control and elimination of the 

transmission dynamics of measles is formulated and analyzed. 

The main objective of this study was to assess the impact of 

immunization strategies on the transmission dynamics of the 

disease. In order to support the analytical results, graphical 

representations showing the variations in reproduction 

numbers with respect to exposure rate are provided in Figure 2 

as well and time graphs of different state variables. Since, 

most of the parameters were not readily available; therefore 

we estimated them and obtain the rest from other sources just 

for the purpose of illustration. Table 3 shows the set of 

parameter values which were used. 

 

Figure 2. Variations in reproduction number with respect to exposure rate. 
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Table 3. Value of parameters used in the model. 

Parameter Description Value/range Source 

π Per Capita birth rate 0.02755 per year [25] 
ϕ Proportions of newborns who are vaccinated 0.5 also varies with scenario (0.0 – 1.0) [26,27] 

ρ Proportions of immigrants who are vaccinated 0.7 also varies with scenario (0.0 – 1.0) [26,27] 

a Arrival rate 0.02755 per year [25] 
c Per Capita contact rate 0.09091 per year [25] 

δ Death due to disease 0.125 per year [17] 

µ Per Capita natural mortality rate 0.00875 per year [25] 
β Probability of one infected individual to become infectious varies with scenario (0.08 – 0.7) [18] 

λ Force of infection, λ=
���

	
 0.096 per year [26,27] 

σ Progression rate from latent to infectious 0.125 per year [25] 

η Recovery rate of treated infectious individuals 0.14286 per year varies with scenario (0.0 – 1.0) [25] 
α The rate of waning of first dose of vaccine 0.167 per year Estimated 

ω The rate of receiving second dose of vaccine 0.8 per year [26,27] 

ε Proportion of individuals who received a first vaccination  0.7 per year varies with scenario(0.0 – 1.0) [26,27] 
θ Proportion of individuals who are vaccinated twice  0.5 varies with scenario (0.0 – 1.0) [26,27] 

 

 

Figure 3. Susceptible population in an outbreak, varying the proportion of 

newborns and immigrants vaccinated (phi=rho=0.0, 0.5, 1.0). 

 

Figure 4. Susceptible population in an outbreak, varying the proportion of 

first and second vaccination (theta=epsilon=0.0, 0.5, 1.0). 

Figure 2 shows that �+ < �+; < �&  ,we see from the 

figure 2 that �& is worst case scenario, it occurs when there is 

no vaccination strategy to control the epidemic, here an 

individual recovers naturally. The basic reproduction number 

�&is at the peak, this implies that there is a high increase in 

reproduction number with respect to exposure rate. Such 

increase results in the outbreak of measles in the community. 

The middle graph �+P
 from the same figure 2, shows 

effects of vaccinating immigrants and newborns only leaving 

away the susceptible population, it can be noted that even 

though just a proportion of the population was vaccinated but 

still have a significant contribution on diminishing the disease 

as compared to when no any control is in place (�&). 

The best case scenario occurs at graph �+ of the similar 

figure 2, here vaccination is offered to newborns, immigrants 

and the susceptible adults in two doses, we note that �+ has 

the least value of increase in reproduction number with respect 

to exposure rate, which implies that measles can be eradicated 

from the community if two dose vaccination policies is 

seriously targeted to a large population. 

Figure 3 shows that the increase in vaccination coverage to 

both the newborns and immigrants causes a reduction in the 

susceptible population and hence reducing the risk of an 

outbreak. 

It can be realized from figure 4 that when vaccination 

programmes are effectively implemented to the population, it 

may reach a stage in which the disease fail to erupt since there 

are very few susceptible individuals to infect, such a 

phenomenon is known as herd immunity. 

 

Figure 5. Vaccinated population in an outbreak, varying the proportion of 

first dose vaccination (epsilon=0.0, 0.5, 1.0). 

The above figure 5 shows the number of vaccinated 
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individuals increase by offering first dose of vaccine to 

susceptible individuals in the population and therefore 

reducing the number of susceptible adults and children in the 

population. 

 

Figure 6. Vaccinated population in an outbreak, varying the proportion of 

second vaccination (theta=0.0, 0.5, 1.0). 

Figure 6 above shows that provision of second dose of 

vaccine increase the number of individuals who cannot be 

infected with the disease by reducing the number of those who 

just received first dose of vaccine. 

 

Figure 7. Infected population in an outbreak, varying the proportion of 

newborns and immigrants vaccinated (phi=rho=0.0, 0.5, 1.0). 

We can observe from figure 7 above that if more newborns 

and immigrants receive vaccination then the likelihood of 

individuals to be infected with the disease becomes very small. 

This in turn can lead to the disease to die out in a population. 

It can be seen from Figure 8 that the proportion of infected 

individuals decrease with an increase in vaccination coverage 

of both dose 1 and dose 2.This is also attributed by the fact that 

less people will be susceptible as they will be immune to the 

disease. 

We can observe from Figure 9 how the provision of fist 

dose and second dose of vaccination increase the number 

individual who are immune to the disease and therefore 

reducing the risk of an outbreak in the population. 

 

Figure 8. Infected population in an outbreak, varying the proportion of first 

and second dose vaccinated (theta=epsilon =0.0, 0.5, 1.0). 

 

Figure 9. Recovered population in an outbreak, varying the proportion of first 

and second dose vaccinated (theta=epsilon=0.0, 0.5, 1.0). 

 

Figure 10. Combined Susceptible, Vaccinated, Exposed, Infectious and 

Recovered population. 

Figure 10 shows that the model provides the illustration for 

control and elimination of the transmission dynamics of 



406 Stephen Edward et al.:  A Mathematical Model for Control and Elimination of the Transmission Dynamics of Measles  

 

measles. We can observe that recovered individuals can be 

increased by increasing provision of vaccination and 

consequently reducing the susceptible and infectious 

individuals. 

4.2. Sensitivity Analysis 

Sensitivity analysis is used to determine how “sensitive” a 

model is to changes in the value of the parameters of the 

model and to changes in the structure of the model. 

Sensitivity analysis helps to build confidence in the model by 

studying the uncertainties that are often associated with 

parameters in models. Sensitivity indices allow us to 

measure the relative change in a state variable when a 

parameter changes. Sensitivity analysis is commonly used to 

determine the robustness of model predictions to parameter 

values (since there are usually errors in data collection and 

presumed parameter values). Thus we use it to discover 

parameters that have a high impact on �&  and should be 

targeted by intervention strategies. If the result is negative, 

then the relationship between the parameters and �& is 

inversely proportional. In this case, we will take the modulus 

of the sensitivity index so that we can deduce the size of the 

effect of changing that parameter. On the other hand, a 

positive sensitivity index means an increase in the value of a 

parameter [26, 28, 30]. The explicit expression of �&  is 

given by the equation (22). Since �& depends only on six 

parameters, we derive an analytical expression for its 

sensitivity to each parameter using the normalized forward 

sensitivity index as by [31] as follows: 

0

0

0

0

0

0

0

0

0

1

1

0.4518998

R

c

R

R

R c

c R

R

R

R

R

β

δ

β

β

δ

δ

∂
ϒ = × = +

∂

∂
ϒ = × = +

∂

∂
ϒ = × = −

∂

 

The rest of sensitivity indices for all parameters used in 

equation (22) can be computed in the similar approach. Table 

below shows the sensitivity indices of �& with respect to the 

eight parameters. 

Table 4. Sensitivity Indices. 

Parameter Description 
Sensitivity 

Index 

β 
Probability of one infected individual to 

become infectious. 
+1 

ϲ Per capita contact rate. +1 

σ Progression rate from latent to infectious. 0.0654 

π Per capita birth rate. 0.5 

� Arrival rate. 0.5 

µ Per capita natural mortality rate. -1.0971 

δ Death due to disease -0.4519 

η Recovery rate of treated infectious individuals -0.5165 

From Table above, we can obtain 0 0 1
R R

cβ
ϒ = ϒ = + , this 

means that an increase in c or β will cause an increase of 

exactly the same proportion in R&. Similarly, a decrease in c 

or β will causes a decrease in �& , as they are directly 

proportional. We can also note that D, F, E < 0hence these 

parameters are inversely proportional to �&. 

It can be seen that, the most sensitive parameters are c and β 

followed by � then π then σ, then δ, then η and the least 

sensitive parameter is µ. 

Therefore, to minimize measles transmission in a 

population, this study recommends that, vaccination should be 

implemented. This is due to the fact that, vaccination reduces 

the likelihood of an individual to be infected, also treatment of 

latently infected people reduces the progression rate to 

infectious stage and treatment of infectious people will stop 

them from transmitting the disease. 

5. Conclusions, Recommendations and 

Future Work 

5.1. Conclusion 

The model has shown importance of measles vaccination in 

preventing transmission within a population. The model 

strongly indicated that the spread of a disease largely depend 

on the contact rates with infected individuals within a 

population. 

It is also realized that if the proportion of the population that 

is immune exceeds the herd immunity level of measles, then 

the disease can no longer persist in the population. In fact, this 

level can be attained by mass vaccination. 

5.2. Recommendations 

Eradication of contagious diseases such as measles has 

remained one of the biggest challenge facing developing 

countries. It is realized that the herd immunity level for the 

disease is high, and mostly when there is an outbreak of the 

disease, and there is an introduction of a mass vaccination 

programme which can cover large number of the population, 

not everybody will be immune because vaccine efficacy is 

usually not 100%. It therefore means that part of the 

population will be immune and others will be vaccinated but 

not immune [1]. Therefore there is an urgent need for any 

country to come up with some new control strategies and 

more efficient ones to fight the spread of the disease in the 

country. 

From the results of this project the following control 

strategies are recommended: 

i. Since the model shows that the spread of the disease 

largely depend on the contact rate, therefore effort should 

be made to minimize unnecessary contact with measles 

infected individuals, this will reduce risk of an outbreak. 

ii. To attain high level herd immunity for the disease, mass 

vaccination exercise should be encouraged to cover the 

majority of the population to prevent outbreak of the 

disease in developing country. 

iii. Measles infected individuals should be treated early this 

will limit its transmission. 
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5.3. Future Work 

Based on the model of this study, it is proposed that future 

work should consider the following: 

i. Any researcher may use this model as a foundation to 

perform a case study at a specific region and obtain 

practical results. 

ii. Carrying out cost-effectiveness analysis of the measles 

immunization model. 
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