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Abstract: Finite Difference Method and Radial Basis Functions are applied to solve partial integro-differential equations with 

a weakly singular kernel. The product trapezoidal method is used to compute singular integrals that appear in the discretization 

process. Different RBFs are implemented and satisfactory results are shown the ability and the usefulness of the proposed 

method. 
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1. Introduction 

Mathematical modeling of some scientific and engineering 

problems lead to partial integro-differential equations (PIDEs). 

In this paper, the following PIDE, with a weakly singular 

kernel is considered.  

 (1) 

where 0µ ≥ , and is subject to the following boundary and 

initial conditions:  
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( 0) ( ) 0 1

u t u t t T
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This type of integro-differential equations appears in some 

phenomena such as heat conduction in materials with memory 

[12, 22], population dynamics, and viscoelasticity [25, 6]. The 

numerical solution of PIDEs is considered by many authors [1, 

2, 19, 20, 23, 27, 30]. 

PIDEs with weakly singular kernels have been studied in some 

papers. Numerical solution of a parabolic integro-differential 

equation with a weakly singular kernel by means of the Galerkin 

finite element method is discussed in [5]. A finite difference 

scheme and a compact difference scheme are presented for 

PIDEs, with a weakly singular kernel, in [28] and [21], 

respectively. A spectral collocation method is considered in [17] 

for weakly singular PIDEs. Also Quintic B-spline collocation 

method [31] and Crank–Nicolson/quasi- wavelets method [32] 

are used for solving fourth order partial integro-differential 

equation with a weakly singular kernel and some others [10, 14]. 

In recent years, meshless methods, as a class of numerical 

methods, are used for solving functional equations. Meshless 

methods just use a scattered set of collocation points, regardless 

any relationship between the collocation points. This property is 

the main advantage of these techniques in comparison with the 

mesh dependent methods, such as finite difference and finite 

element. Since 1990, radial basis function methods (RBF) [13] 

are used as a well-known family of meshless methods to 

approximate the solutions of various types of linear and nonlinear 

functional equations, such as Partial Differential Equations 

(PDEs), Ordinary Differential Equations (ODEs), Integral 

Equations (IEs), and Integro-Differential Equations (IDEs) [7, 8, 

11, 13, 16, 18, 24]. In the present work, for the first time 

derivatives, we use the Finite Difference (FD) scheme to 

discretize the equation which it makes a system of partial 

integro-differential equations. Then we use radial basis functions 

(RBFs) to solve this system. Recently FD-RBF method is used to 

solve some problems like nonlinear parabolic-type Volterra 

partial integro-differential equations [1], fractional-diffusion 

inverse heat conduction problems [33], and wave equation with 

an integral condition [34]. 

In this paper, FD-RBF methods are applied for numerical 

solution of PIDEs with a weakly singular kernel. Singular 

integrals, which appear in the method, are computed by the 

product trapezoidal integration rule. 

The paper is organized as follows. In Section 2, the RBFs 

are introduced. Section 3, as the main part, is devoted to 
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solving weakly singular PIDEs, by finite difference and RBFs. 

An illustrative example is included in Section 4. A conclusion 

is presented in Section 5. 

2. Radial Basis Functions 

Interpolation of a function 
du : →ℝ ℝ  by RBF can be 

presented as the following [4] 

     (2) 

Where [0 )φ : , ∞ → ℝ  is a fixed univariate function, the 

coefficients 0( )
N

i iλ =  are real numbers, ( )
0

N

i i=
x  is a set of 

interpolation points in 
d
ℝ , and ⋅� �  is the Euclidean norm.  

Eq. (2) can be written as follows  

        (3) 
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Consider 1N +  distinct support points ( ( ))j ju,x x , 

0,1,...,j N= . One can use interpolation conditions to find 

iλ s by solving the following linear system  

= ,AΛ u  

in which 

0[ ( )]N

j i i jφ , == − ,A x x� �  

and 

u = [u(x�), u(x	), … , (x�)]
 

Table 1. Some well-known RBFs. 

Name of the RBF Definition 

Gaussian 
2( )( ) crr eφ −=  

Inverse Quadric 2 2

1( )
r c

rφ
+

=  

Hardy Multiquadric 2 2( )r r cφ = +   

Inverse Multiquadric 2 2

1( )
r c

rφ
+

=   

Cubic 
3( )r rφ =  

Thin Plate Spline 
2( ) log( )r r rφ =  

Hyperbolic Secant ( ) sech( )r
c

rφ =   

Some well-known RBFs are listed in Table 1, where the 

Euclidian distance �  is real and non-negative, and �  is a 

positive scalar, called the shape parameter. 

Also the generalized Thin Plate Splines (TPS) are defined 

as the following: 

�(r) = r�� log(r) , m = 1,2, … 

Some of RBFs are unconditionally positive definite (e.g. 

Gaussian or Inverse Multiquadrics) to guarantee that the 

resulting system is solvable, and some of them are 

conditionally positive definite. Although, some of RBFs are 

conditionally positive definite functions, polynomials are 

augmented to Eq. (2) to guarantee that the outcome 

interpolation matrix is invertible. Such an approximation can 

be expressed as follows  

 (4) 

where ��(�), � = 1, … , �, are polynomials on 
d
ℝ  of degree 

at most 1m − , and 
1m

d
l

 − 
 
 

= . Here l  is the dimension of 

the linear space 1

d

m−Π  of polynomials of total degree less 

than or equal to m  with d  variables.  

Collocation method is used to determinate the coefficients 

( )0 1 N…λ λ λ, , ,  and ( )1 2N N N l…λ λ λ+ + +, , , . This will 

produce 1N +  equations at 1N +  points. l  additional 

equations is usually written in the following form  

  j = 1, … , �          (5) 

3. Application of FD-RBF Method 

In this section we explain the process of solving PIDEs, 

with a weakly singular kernel, in the following form  

 (6) 

where u
t t

u ∂
∂= , 

2

2

u
xx x

u ∂
∂

= , 0µ ≥ , with the following 

boundary and initial conditions  

          (7) 

          (8) 

At first we introduce grid points 
it a ih= + , 0 1i M= , , ..., , 

where 1M ≥  is an integer, and ( 0)h T M= − / .  

Considering (6) at point ( )ix t, , we have 

 � = 1, … , !     (9) 

As the finite difference technique, we have  
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( ) 1 1( ) ( )

2

i i
t i

u x t u x t
u x t

h

+ −, − ,, ≈ .  

Discretizing (9) by the θ -weighted method leads to  

( ) ( )( )

( ) ( )1
2

1 1
1

0
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2

( ) ( (1 ) )
i

i i
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t
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� = 1, … " # 1 , and [0 1]θ ∈ , . By using the notation 

( ) ( )i

iu x u x t= ,  we have  

 (10) 

We now use the product trapezoidal integration technique, 

well addressed in [9], to approximate the integrals  

  (11) 

and 

    (12) 

where 

 j=1,2,…,i-1 

Substituting (11) and (12) into (10), results in  

1 1 1

1

0 0

( ) ( ) 2 ( ( ) (1 ) ( ))

2 ( ) 2 (1 ) ( )

i i i i

xx xx

i i
j j

ij xx ij xx

j j

u x u x h u x u x

h w u x h w u x

µ θ θ

θ θ

+ − +

+

= =

= + + −

+ + − ,∑ ∑
 

or  

 (13) 

for i=1,…m-1. Let’s approximate the function ( )iu x  in 

terms of RBFs, as follows  

 (14) 

where 

( ) ( )n nx x xφ φ= − ,� �  

nx a nk= + , 0 1n N= , , ..., , are center points, 

( )k b a N= − /  and 1N ≥  is an integer,  

$��� � ������, … , �%��� � 1�&        (15) 

and 0 1 2
[ ]i T

i i N i N i N
…λ λ λ λ, , , + , +=Λ  is an unknown 

vector. 

Collocating Eq. (14) at 0
( )N

j j
x =  leads to the following 

system 

j=0,…,N 

Two additional conditions, as mentioned in section 2, can 

be written as 

0

0
N

i j

j

λ ,
=

= ,∑                (1) 

0

0
N

i j j

j

xλ ,
=

= .∑              (2) 

Eqs. (14), (16), and (17) can be written in the following 

matrix form  

 
i i= ,u AΛ

 

where '� � �'�
� , … , '%

�  0 0�& , 

0 1 1
[ ]i T

i i N i N i N
…λ λ λ λ, , , + , +=Λ , and  
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+
+
+
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   (18) 

By two times differentiation from Eq. (14), with respect to 

x , we obtain  

( )
0

( )
N

i T i

xx i n n

n

u x xλ φ,
=

= = ,∑ Ψ Λ         (19) 

Where 

2��� � �344
����344

	��� … 344
%�5�00�& 

Substituting Eqs. (14) and (19) in Eq. (13), leads to  
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1 1

1 0
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( ) 2 (1 ) ( ) 2 (1 ) ( )

2 ( (1 ) ) ( )

T i T i

ii

T i T i T
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x h w x
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for � � 1, … , ! − 1. So, we consider collocation points, nx , 

6 = 0,1, … , 7,  to obtain the entries of the vectors of the 

coefficients 
i

Λ , 1i M= ,...,  in Eq. (20). This leads to  

  (21) 

where � = 1, … , ! − 1, and  
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+
+
+
+
+
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As the first step we must determine 
0

Λ  and 
1

Λ . 

Obviously, 
0

Λ  can be obtained by the initial condition 

 
0

0

0 0 1

( ) ( ,0) ( )

[ ( ) ( ) ( ) 0 0] .T

N

u x u x g x
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To approximate 
1

Λ , we use 

         (22) 

Substituting (22) into (9), similarly leads to 

      (23) 

where 

1 1

0
2

,.
t s t

v ds
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−=
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and  

1 2

0
2

.
t t s

w ds
t s

−=
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The convergence of RBF interpolation has been addressed 

by Buhmann [3, 4], and other researchers [15, 26, 29]. 

4. Numerical Example 

In this section, an example is provided to illustrate the 

efficiency of this approach. For the sake of comparison 

purposes, we use the two norm and infinity norm of errors.  

Consider the following weakly singular PIDE [21, 28] 

( ) ( )
1

2

0
, ( ) , , 0 1, 0 ,

t

t xxu x t t s u x s ds x t T
−

= − < < ≤ ≤∫  

with the boundary and initial conditions 

(0, ) (1, ) 0, 0 ,u t u t t T= = ≤ ≤
 

( ,0) sin( ), 0 1.u x x x= ≤ ≤
 

The exact solution is 

5 3

2 2( , ) ( )sin( )u x t M t xπ π= , 

where M  denotes the function 

1

0

3
( ) ( 1) ( 1) .

2

n n

n

M z n z
∞

−

=
= − Γ +∑

 

We will use 
1

2
θ = , 0.001h = , 1T = , and 25.N =  

Errors of the numerical solutions for TPS-RBF ( 4m = ), 

IMQ-RBF ( 0.1c = ), and Sech-RBF ( 0.1c = ) are shown in 

the Table 2 and are plotted in Figures 1, 2, and 3, respectively.  

Table 2. Errors. 

 TPS-RBF IMQ-RBF Sech-RBF 

t  E ∞ǁ ǁ  
2

Eǁ ǁ  E ∞ǁ ǁ  
2

Eǁ ǁ  E ∞ǁ ǁ  
2Eǁ ǁ  

0.1 5.98e-04 2.16e-03 8.92e-03 2.71e-02 5.31e-03 1.60e-02  

0.2 1.83e-03 6.34e-03 6.46e-03 2.48e-02 3.16e-03 1.25e-02  

0.3 2.47e-03 8.53e-03 5.36e-03 1.70e-02 2.29e-03 7.10e-03  

0.4 2.17e-03 7.51e-03 3.65e-03 7.75e-03 2.26e-03 5.58e-03  

0.5 1.22e-03 4.22e-03 4.06e-03 1.72e-02 2.51e-03 1.18e-02  

0.6 1.33e-04 4.46e-04 5.77e-03 2.31e-02 3.52e-03 1.41e-02  

0.7 6.64e-04 2.31e-03 5.64e-03 2.09e-02 3.15e-03 1.18e-02  

0.8 9.82e-04 3.41e-03 3.78e-03 1.34e-02 1.92e-03 6.83e-03  

0.9 8.72e-04 3.02e-03 1.41e-03 4.64e-03 5.35e-04 1.72e-03  

1.0 5.19e-04 1.80e-03 4.89e-04 2.17e-03 4.76e-04 1.92e-03  

5. Conclusion 

Three different RBFs are implemented in a FD method for 

solving a PIDE with a weakly singular kernel successfully. 

The results of applying the method on the illustrative example 

confirm the ability and the usefulness of the proposed 

app−roach. In comparison with those results reported in [21, 

28], this method achieved more accurate results with less data 

grid points. 
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Figure 1. TPS-RBF Error. 

 

Figure 2. IMQ-RBF Error. 
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Figure 3. Sech-RBF Error. 
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