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Abstract: In this paper, a deterministic Lymphatic Filariasis (LF) model is formulated and analyzed with the aim of assessing 

the effect of chemoprophylaxis for the exposed individuals and treatment of symptomatic LF infections. Qualitative and 

quantitative analysis are implemented to determine the basic reproduction number eR  necessary for the control of the diseases 

in the communities. The disease-free equilibrium (DFE) exists and is locally and globally asymptotically stable if 1eR < , 

whereas if 1eR >  the endemic equilibrium exists and it is locally asymptotically stable. Numerical simulations are carried to 

complement the analytical results. 
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1. Introduction 

Lymphatic Filariasis (LF), a debilitating disease, is one of 

the most prevalent and yet the most neglected tropical diseases 

with serious economic and social consequences Bhunu [1]. 

Lymphatic Filariasis is more common in regions with high 

incidence of poverty, making it a disease of the poor and 

serves as an indicator of underdevelopment Tan [21].  

Chemoprophylaxis or Chemoprevention refers to the 

administration of a medication for the purpose of preventing 

or curing the disease or infection in the community. The 

Lymphatic Filariasis disease has three broad clinical scenarios 

which are asymptomatic infection, acute infection and chronic 

infection.  

Chemoprophylaxis being one of the approaches to prevent 

LF includes giving medicine that kills the microscopic worms 

and suppress the level of microfilariae in the blood and 

thereby reduce the transmission of parasites by mosquitoes in 

endemic areas. Chan [4] observed that LF disease progression 

is a consequence of worm induced damage and occurs at a 

high rate of hydrocele and low rate of lymphedema. 

The present strategies to control LF disease include the use 

of Mass Drug Administration (MDA) of which the whole 

community are given anti-filarial drugs irrespective of their 

mf-status. A number of studies on the impact of MDA on the 

transmission dynamics of LF infections have been developed 

over the years (decades). For instance, Stolk [18] developed 

LYMFASIM, a microsimulation model for transmission and 

control of lymphatic filariasis, the authors used the model to 

simulate the effects of mass treatment, in order to estimate the 

number of treatment rounds necessary to achieve elimination 

of the disease. The study revealed that, the effectiveness of 

mass treatment depend much on number of treatment rounds, 

coverage, drug efficacy and endemicity level. 

Stolk [17] compared EPIFIL and LYMFASIM models in 

terms of their structure and parameter quantifications and 

highlighted deficiencies that impede their wide spread 

application for decision support. They found that, despite 

differences in model structure and parameterization, both 

models were able to predict the duration of control through 

treatment required for elimination under assumptions based 

on biological understanding. 

Jambulingam [8]. Used LYMFASIM model to estimate the 

duration of MDA required for elimination and residual levels 
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of microfilaemia (Mf) and antigenaemia (Ag) prevalence 

reached after that duration in different transmission settings 

varying from low to high. The result indicated that the 

duration of annual MDA increased with higher baseline 

endemicity and lower coverage. 

With the 2020 goal of elimination looming, Kastner [9] 

used a model-based assessment to develop plausible scale-up 

scenarios to reach global elimination and eradication of LF.  

Authors predicted the duration of MDA to reach local 

elimination for different transmission archetypes, estimated 

the required number of treatments and the implication of rapid 

scale-up. The result showed that, if MDA programs are 

drastically scaled up and expanded, the final round of MDA 

for LF eradication could be delivered in 2028 after 4,159 

million treatments. 

Swaminathan [19] developed two mathematical models 

EPIFIL and LYMFASIM. Both models have been used to 

predict the long-term impact of control programmes (mass 

chemotherapy/vector control) and assess the prospects of 

elimination. They suggested that, although progression to 

hydrocoele may be associated with worm burden, progression 

to lymphoedema is due to immunopathological reactions and 

secondary bacterial infections. Further progression of 

lymphedema depends on the frequency of acute episodes of 

adenolymphangitis. 

Bhunu [1] developed an analytical deterministic model for 

the spread of lymphatic Filariasis, a mosquito-borne infection. 

The author found that even when all lymphatic filariasis cases 

displaying elephantiasis symptoms are put on treatment it will 

not be able to eradicate the disease. The result suggests that 

effective control of lymphatic filariasis may lie in treatment 

for those displaying symptoms as well as chemoprophylaxis 

for the exposed. 

This work differs from others by introducing treatment at 

early stage of infection (asymptomatic) for the purpose of 

reducing the number of infected individuals, as also suggested 

by Bhunu [1]. 

Therefore in this study, we propose and analyse an 

analytical deterministic model of the transmission dynamics 

of lymphatic Filariasis with the aim of obtaining insight on the 

effect of chemoprophylaxis for the exposed class and 

treatment of asymptomatic LF infections in a population. 

2. Model Formulation 

We formulate a Lymphatic Filariasis model in which the 

human population is divided into four (4) compartments and the 

vector population is divided into three (3) compartments 

distinguished by disease status. The human population at time ,t  

( )hN t  comprise the susceptible compartment ( )hS t  made of 

individuals who are at risk of LF infection upon effective 

contact with an infected vector. The latent or exposed class 

( )hE t  (infected but not infectious), LF infected ( )hI t  

(assumed infectious) and the recovered compartment ( )R t . 

The vector population at time ,t ( )vN t , on the other comprises 

the susceptible female mosquitoes ( )vS t . The exposed vector 

( )vE t  also infected mosquitoes but not yet infectious and 

infected vector ( )vI t  with the potential pass on LF parasite 

through effective contact with susceptible humans. We assume 

homogeneous mixing of the population so that transmission 

occurs horizontally through standard incidence. The disease 

transmission vertically is ignored. The rate of infection of 

susceptible individuals is hλ  and the rate at which the infected 

individuals infect the susceptible mosquito is vλ . The 

susceptible humans hS  are replenished through births and 

immigration at a constant rate Λ and recovery of infected 

individuals at a constant rate of ω ( )0ω> . The Susceptible 

human population hS  is decreased by infection with LF 

through contact with infected mosquito at a rate hλ  and move 

to exposed class. Exposed compartment gains from infection of 

susceptibles at a rate hλ  and decreasing through 

chemoprophylaxis at a constant rate and progress to recovery 

class R  at a constant rate of δ . The compartment is further 

decreased by the development to active LF hI  at a constant 

rate ν  and progress to the recovery state R  due to 

successfully treatment at the rate ε . Since the disease has 

temporary immunity, a fraction ω  of individuals moves from 

the recovery state to susceptible state. It is assumed that 

vvh
h

v

I

N

β αλ =  and 
h

h

hv
v

I

N

β αλ =  as in Tumwiine [22]. The 

term 
vvh

v

I

N

β α
 denotes the rate at which the human hosts hS  

get infected by infected mosquitoes vI  and 
h

h

hv I

N

β α
 refers to 

the rate at which the susceptible mosquitoes vS  get infected by 

the infected human hosts. It indicates that the rate of infection of 

susceptible human hS  by infected mosquito vI  is dependent 

on proportion of available infected vector on the total number of 

vector population. vhβ  is the probability that a human host 

becomes infectious and hvβ  is the probability that susceptible 

mosquitoes become infected by biting infected human while 
α  refers to mosquito biting rate. Therefore the total human 

population is given by  

h h h hN S E I R= + + +               (1) 

and the total vector (mosquito) population is  

v v v vN S E I= + +                   (2) 

The proposed model satisfies the assumption that host and 

vector populations are not constant, there is no vertical 

transmission meaning that all newly born are susceptible to 

infection and we assume that recovered hosts have temporary 

immunity that can be lost and be susceptible to infection again, 

but there is no recovery from infection to vector class. 

Taking into account the above considerations and 

assumptions, we then have the following schematic flow 

diagram: 
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Figure 1. The Lymphatic Filariasis Model. 

The model is thus governed by the following system of 

non-linear ordinary differential equations: 

h
h h h h

dS
S R S

dt
λ ω µ= Λ − + −            (3) 

( )    h
h h h h

dE
S v E

dt
λ δ µ= − + +           (4) 

( )h
h h h

dI
vE I

dt
µ ε= − +                  (5) 

( )h h h
dR

E I R
dt

δ ε ω µ= + − +              (6) 

v
v v v v

dS
S S

dt
π λ µ= − −                   (7) 

( )   v
v v v v

dE
S E

dt
λ γ µ= − +                (8) 

  v
v v v

dI
E I

dt
γ µ= −                      (9) 

with non-negative initial conditions and ( )hN >0 0 , 

( )vN >0 0. The terms hλ  and vλ  are as defined above. 

3. Model Analysis 

3.1. Positivity of Solutions 

For the model ( )3 9−  to be epidemiologically meaningful 

and well posed, we need to prove that all state variables are 

non-negative 0t∀ ≥ . 

Lemma1. 

Let 
( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
0          0 , 0 ,

0 , 0 , 0 , 0 , 0   0

h v

h h v v

S S

E I R E I

 > ∈ Γ 
≥  

 

Then the solution { }( ),  ,  ,  ,  ,  ,  h h h v v vS E I R S E I t  of 

the model system ( )3 9−  is positive for all 0t ≥ . 

Proof. From the first equation of system ( )3 , we have 

( )    h
h h h h h h h

dS
S R S S

dt
λ ω µ λ µ= Λ − + − ≥ − +  

which upon integration gives 

( )( ) (0) 0h
h h

h dt
S t S e

λ µ+∫−≥ ≥  as ,t > ∞  

we obtain ( ) (0)h hS t S≥  

Similarly, it can be shown that all the remaining state 

variables of the system ( )3 9−  are also positive for all 0t > . 

Hence, all feasible solution of system ( )3 9−  enters the 

invariant region 

{ , , , , , , }h h h v v vS E I R S E IΓ = . 

3.2. Steady State Solutions 

Setting the right and side of system ( )3 9−  to zero in 

terms of *
hλ  and *

vλ  we obtain the following  

( )
*

*1
h

h h

S
Qµ ω λ

Λ=
+ −

 

* * *1
h h h

h

E Sλ
ν δ µ
 

=  + + 
 

( )
* * *1
h

h

h h
h

I S
ν

ε µ ν δ µ
λ

  
    + + +  

=  

* * *
h hR Q Sλ=  

( )
*
v

v v

S
π

µ λ
=

+  

* * *1
v v vE S

v
λ

γ µ
 

=  + 
 

( )
* * *
v v v

v v

I S
γ λ

µ γ µ
 

=   + 
 

where 

( ) ( )
1

1
h h hh

Q
δ ε ν

ω µ ν δ µ ε µ ν δ µ

     
  = + ≤       + + + + + +      

 

Substituting *
   vI *

   and hI  in the expression for the forces 

of infection *
vλ  and *

hλ  respectively, we obtain  

( )( )
* *

*   hv h h
v

h h h

S

N

β ανλλ
ν δ µ ε µ

=
+ + +
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( )
* *

*
 v v

h
v v v

Svh

N

β αγλλ
γ µ µ

=
+

 

Upon substitution of *
hλ  into *

vλ  we obtain 

( ) ( ) ( )
* *

* *  hv h v
v v

h h v v h v

S Svh

N N

αβ γαβ νλ λ
ν δ µ ε µ γ µ µ

  
=   + + + +  

 

* 0vλ =                       (10) 

2 * * * * e v h v hor R S S N N=             (11) 

where 
2
e hv vh

v v h h

R
α γ α νβ β
µ γ µ ε µ ν δ µ
     

=      + + + +     
 

we also observe that  

* * * * * * *=  v v v v v v vN S E I S Q Svλ= + + +  

and * * * * * * * *= h h h h h n h hN S E I R S Q Sλ= + + + +  

with ( ) ( )
1 1

v
v v v v

Q
γ

γ µ µ γ µ µ
+ =

+ +
=  

and ( ) ( )
1

h
h v v

Q Q
γ

ν δ µ µ γ µ
= + +

+ + +  

Substituting for *
vN  and *

hN  in equation ( )11  above we 

have 
 

2 0v vA B Cλ λ+ + =                (12) 

where  

( )2
v v h ev

A Q Q Q R= +  

( )( )2 2v e e h ev
B Q R R Q R= − + +  

( ) ( )1 1e eC R R= − +  

3.3. Disease-Free Equilibrium Point 

The solution * 0vλ =  of ( )10  lead to the disease free 

equilibrium point given by 0 ,0,0,0, ,0,0
h v

E
π

µ µ
 Λ=  
 

  

3.4. Existence of Endemic Equilibrium Point 1E  

The solution 2 0v vA B Cλ λ+ + =  of ( )11  leads to the 

endemic equilibrium point given by  

( )
*

*1
h

h h

S
Qµ ω λ

Λ=
+ −

 

* * *1
h h h

h

E Sλ
ν δ µ
 

=  + + 
 

( )
* * *1
h

h

h h
h

I S
ν

ε µ ν δ µ
λ

  
    + + +  

=  

* * *
h hR Q Sλ=  

( )
*
v

v v

S
π

µ λ
=

+  

* * *1
v v vE S

v
λ

γ µ
 

=  + 
 

( )
* * *
v v v

v v

I S
γ λ

µ γ µ
 

=   + 
 

Where 

( ) ( )
1

1
h h hh

Q
δ ε ν

ω µ ν δ µ ε µ ν δ µ

     
  = + ≤       + + + + + +      

 

3.5. Reproduction Number eR  

The basic reproduction number or contact number eR  

represents the average number of secondary infections that a 

single infection host can generate in a totally susceptible 

population of hosts and vectors. We calculate the basic 

reproduction number eR  by using the next generation 

method on the system ( )3 9− . eR  is obtained by taking the 

largest (dominant) eigenvalue (spectral radius) of 

( ) ( ) 1
0 0 1.   

i i

i i

F E V E
A FV

x x

−
−   ∂ ∂

= =   ∂ ∂   
      (13) 

where iF  is the rate of appearance of new infections and 

ii iV V V +−= −  is the is the net rate of transfer of into 

compartment i; with iV −  denoting transfer out of 

compartment i  and iV +  the transfer of individuals into 

compartment i . This model has four (4) infected classes, thus 

4m = ; and are ordered as follows: , , , and  h h v vE I E I . The 

matrices F  and V  are obtained from model ( )3 9−  as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 0 1 0 1 0 1 0

2 0 2 0 2 0 2 0

3 0 3 0 3 0 3 0

4 0 4 0 4 0 4 0

 

h h v v

h h

h h

h h

v v

v v

v v

f E f E f E f E

E I E I

f E f E f E f E

E I E E
F

f E f E f E f E

E I E I

f E f E f E f E

E I E I

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂
 

∂ ∂ ∂ ∂ =  ∂ ∂ ∂ ∂
 
 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
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0 0 0

0 0 0 0

0 0 0

0 0 0 0

vh v

h

hv h

v

β α µ
πµ

β απµ
µ

Λ 
 
 
 

=  
 
 Λ
 
 

F           (14) 

The Jacobian matrix of V  evaluated at 0E  is given by 

( )
( )

( )

0 0 0

0 0

0 0 0

0 0

h

h

v

v

v

v

δ µ
ε µ

γ µ
γ µ

+ + 
 − + =
 +
 

− 

V      (15) 

eR  is defined as the spectral radius (dominant eigenvalues) 

of the matrix 1−FV  which is 

( )( )( )
2

vh hv
e

h h v v

R
β β α νγ

ν δ µ ε µ γ µ µ
=

+ + + +
 

e ev ehR R R=  

The basic reproduction number eR  is used to determine 

whether the disease becomes persistent or dies out depends on 

magnitude of eR . Stability of the equilibrium points can be 

analyzed using eR . 

3.6. Local Stability of Disease Free Equilibrium Point 

Theorem 1: The disease free equilibrium point is locally  

Asymptotically stable if and only if 1eR < , and is unstable 

if 1Re > .  

Proof: The disease-free steady state, 0E  is given by 

,0,0,0, ,0,0 .
h v

π
µ µ
 Λ
 
 

 

The Jacobian matrix of the system ( )3 9−  evaluated at 

0E  is given by 

( )
( )

( )

( )

0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

h vh

h vh

h

h

hv v

hv v

v

EJ

µ ω αβ
ν δ µ αβ

ν ε µ
δ ε ω µ

αβ µ
αβ γ µ

γ µ

− − 
 − + + 
 − +
 − +=  
 − −
 

− + 
 − 

                 (16) 

The characteristic polynomial of 
0EJ  is given by

0
0EJ Iλ− =  giving rise to 1 hλ µ= −  and the eigenvalues 

( )
( )2,3

0
0

h

h

v

v

δ µ λ
λ

ε µ λ
− + + +

= =
− + +

 

which yields ( )2 hvλ δ µ= − + +  and ( )3 hλ ε µ= − + , 

( )4 ,hλ ω µ= − +  5 vλ µ= −  again eigenvalues 

( )
6,7

0
0v

v

γ µ λ
λ

γ µ λ
− + +

= =
− −

which gives 6 vλ µ= −  

and ( )7 vλ γ µ= − + , Since 1 2 7... 0λ λ λ< < < <  (both 

eigenvalues are real and negative) then the equilibrium is 

asymptotically stable.  

3.7. Global Stability of the Disease Free Equilibrium Point 

0E  

Theorem 2: The Disease Free Equilibrium point 0E  is 

asymptotically stable if 1eR <  and unstable if 1eR >  

Proof: We use the comparison theorem to prove theorem 2 

as in Lakshmikantham [13], Niger [16]. We consider the 

infected class components where their rates of change can be 

written as 

( )

'

'

'

'

( )

( ) 0
  

( )

( )
0

v h
vh v

h h vh

h h

v h vv
hv h

v v h
v

S
I

E t NE

I t I

E SE t
I

I N
I t

µα
πµ

πµα
µ

β

β

  Λ
−    

     
    
     = − −
      
  −    
  Λ     

   
 

F V    (17) 

where the matrices F  and V  are given by ( )14  and ( )15 . 

However, considering that 
v

h
h

S
µ

πµ
Λ

≤ , then 

  0h v

v h

S
t

N

µ
πµ
Λ

≤ ∀ ≥  in the region  Γ . Similarly, 

  0h

v

v

h

S
t

N

πµ
µ

≤ ∀ ≥
Λ  in the region  Γ . Hence we have  

( )

'

'

'

'

( )

( )
  

( )

( )

h h

h h

vv

v
v

E t E

I t I

EE t

I
I t

 
  
  
   ≤ −
  
  
   

 

F V               (18) 
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where  

( )

( )

( )

0 0

( ) 0 0

0 0

0 0

vh v
h

h

h

hv h
v

v

v

v
β α µδ µ

πµ
ν ε µ

β απµ γ µ
µ

γ µ

Λ − + + 
 
 − +

− =  
 − +
 Λ
 

−  

F V  (19) 

Moreover, having all eigenvalues of the matrix −F V  

with negative real parts, it follows that the differential 

inequality system ( )18  is stable for 1eR <  Niger [14]. 

Consequently ( ) ( ), , , 0,0,0,0h h v vE I E I →  as t → ∞ .  

Thus, by comparison theorem Lakshmikantham [13] 

( ) ( ), , , 0,0,0,0h h v vE I E I →  as t → ∞ . Evaluating system 

( )3 9−  at 0 h h v vE I E I= = = =  gives  h
h

S
µ
Λ→  and 

 v
v

S
π
µ

→  for 1eR < . Hence the Disease Free Equilibrium 

point 0E is globally asymptotically stable for 1eR < . 

3.8. Stability of the Endemic Equilibrium Point 1E  

3.8.1. Non-existence of Endemic Equilibria for eR 1<<<<  

Models that exhibit backward bifurcation are characterized 

by the presence of two equilibria. 

When the associated 1eR < . This property is now 

investigated. From equation ( )12  

It can be noted from equation ( )12 that the coefficient A is 

always positive. 

Case i: When 1eR <  then 0B >  and 0C > . Thus by 

using Descartes’ rule of sign and Routh Hurwitz criterion, the 

quadratic ( )12 has no positive roots. Therefore system 

( )3 9−  has no endemic steady states when 1eR < . 

Case ii. When 1eR = , 0B >  and 0C = , the quadratic 

( )12  reduces to 0v
B

A
λ = − < . 

Case iii. When 1eR > , always 0C <  and there are two 

possibilities of the values of B, either 0B > or 0B < . 

In the case, when 0B >  the quadratic ( )12  has only one 

real positive root likewise when 0B <  the quadratic ( )12  

has only one real positive root. 

Theorem 3: The Lymphatic Filariasis model ( )3 9−  has at 

least one endemic equilibrium 1E  whenever 1eR > . If 

1eR < , the model ( )3 9−  has no endemic equilibria. 

Theorem 3, shows that the model exhibits forward 

bifurcation, due to none endemic equilibria whenever 1eR < . 

For detailed exposition of forward bifurcation, the stability of 

endemic equilibrium is again determined through the 

investigation of the possibility of existence of the forward 

bifurcation using Center Manifold theorem. According to 

Chavez [5] the result indicates the possibility of forward 

bifurcation. This is demonstrated graphically in Fig. 2 (the 

figure shows a forward bifurcation). 

 

Figure 2. Forward Bifurcation. 

Figure 2 illustrates a forward bifurcation of the force of 

infection at equilibrium against the reproduction number eR

of the model ( )3 9− . The stationary solutions occur at 

1eR = . If  1eR <  no biologically meaning for endemic 

stationary solution exist since the disease-free stationary 

solution is a global attractor, but if 1eR >  the endemic 

solution exists and is a global attractor. This is referred to as a 

forward bifurcation because in the neighbourhood of the 

bifurcation point, the endemic disease prevalence is an 

increasing function of 0R . 

3.8.2. Global Stability EEP 

In this section, we investigate the global stability of the 

EEP using Lyapunov function technique developed and 

explored by Korobeinikov [10, 11, 12]. We construct 

Lyapunov function of the form, 

( )*
ln  i i i iL a X X X= −∑              (20) 

where ia  is properly selected constants, iX  is the 

population of the thi  compartment, and *
iX  is the 

equilibrium point. The approach has been found to be useful 

for compartmental epidemic models with any number of 

compartments Korobeinikov [8, 9, 10]. Thus, we consider the 

Lyapunov function of the form 

( ) ( ) ( )
( ) ( ) ( )
( )     

* * *
1 2 3

* * *
4 5

*
7

6

ln ln ln

    ln ln ln

ln

h h h h h h h h h

v v v v v v

v v v

L a S S S a E E E a I I E

a R R R a S S S a E E E

a I I I

= − + − + −

+ − + − + −

+ −

 (21) 
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where, 1 2 3 7, , ,...,a a aa  are positive constants. 

Differentiating our Lyapunov function with respect to time we 

have, 

        

        

* * *

1 2 3

* *

4 5 6

*

7

1 1 1

*
1 1 1

1

h h h h

h h

v v v v

v v

v v

v

h h

h

S dS E dE I dIdL
a a a

dt S dt E dt I dt

S dS E dER dR
a a a

R dt S dt E dt

I dI
a

I dt

     
     = − + − + −
     
     

    
    + − + − + −

     
     

 
 + −
 
 

 (22) 

From the system ( )3 9−  we have, 

2 2
* *

1 5

* * *

1

* *

1

* * *

2 *

1 1

         1 1

          1 1

          + 1 1

h v
h h v v

h v

h v h vh v v h

h v h

h

h

h v h h

h v h h

S SdL
a S a S

dt S S

S I S I S
a

S I S

S R
a R

S R

E I S E
a

E I S E

µ µ

β αµ
π

ω

   
   = − − − −
   
   

  
  − − −
  
  

  
  + − −

  
  

 
 − −
 
 

* *

3 *

**

4 *

**

4 *

* * *

5

          + 1 1

         1 1

        1 1

          1 1

vh v v h

h h h
h

h h h

h
h

h

h
h

h

v h v

v h v

I S

I E I
a E

I E I

E RR
a E

R E R

I RR
a I

R I R

S I S
a

S I S

αβ µ
π

ν

δ

ε




 


  
  − −
  
  

  
  − − −

  
  

  
  + − −

  
  

 
 − − −
 
 

* * *

6 *

* *

7 *

        1 1

          1 1

hv h h v

v h v v hv h h v

v h v v

v v v
v

v v v

I S

E I S E I S
a

E I S E

I E I
a E

I E I

αβ µ

αβ µ

γ


 
  Λ

  
  + − −
   Λ
  

  
  + − −
  
  

      (23) 

This this can be written as: 

( )
2 2

* *

61 11
h v

h h v v

h v

S SdL
a S a S F

dt S S
µ µ

   
   = − − − − + ℜ
   
   

  (24) 

where, ( )F ℜ  is the balance of the right hand terms of ( )24 . 

Following the approach of Bowong [3], Korobeinikov [10] 

and McCluskey [14] F  is non-positive for 

, , , , , , 0h h h v v vS E I R S E I >  and therefore,  

0 if
dL

dt
=  

* * * * * * *,   ,  ,  ,  ,  ,  vv v v v vh h h h h hS S E E I I R R S S E E I I= = = = = = =

0  for?  , , , , , , 0h h h v v v
dL

S E I R S E I
dt

< > . 

Thus, if 1effR >  then, model system ( )3 9−  has 

endemic equilibrium point 1E which is globally asymptotically 

stable. 

4. Sensitivity Analysis 

In general the results of the model depends on the model 

structure (compartments and flows) and model parameter 

values. Changes in model parameters may result in incorrect 

disease transmission or assessment of impact of infection 

control systems. Numerical sensitivity analysis of the basic 

reproduction number against model parameters based on the 

technique developed by Chitnis [6] is presented. The aim of 

the study is explore model output sensitivity with changes in 

model parameters or identify parameters with important 

uncertainties on the model output. The process involves the 

determination of sensitivity indices that measure the relative 

change of state variables with changes in parameter values. 

We compute the sensitivity indices using an analytical 

expression for the sensitivity of eR  as e e

e

R
q

R q
r

q R

∂
= ×

∂ , to 

each parameter involved in eR . For example sensitivity index 

of eR  with respect to α  and γ are  

9.7912,
R ee

e

R
r

R
α

α
α

∂
= × =

∂  0.01923eR e

e

R
r

R
γ

γ
γ

∂
= × =

∂ , 

respectively. Other indices include 
Re

vh
rβ ,

Re

hv
rβ , 

Rerβδ
, 

Re

v
rµ , 

Re

h
rµ , Rerν  and Rerε  and are presented in table 1 below. 

Table 1. Sensitivity Indices of eR . 

Parameter Parameter Value Sensitivity Index Source 

α  0.29 +9.7912 Ishikawa [7] 

δ  0.125 -8.20209 Assumed 

vµ  0.03 -0.51923 Assumed 

hvβ  0.083 +0.5 Miranda [15] 

vhβ  0.86 +0.49999 Niger [16] 

ε  0.00722 -0.47375 Niger [16] 

ν  1/17 +0.340347 Blayneh [2] 

hµ  0.0004 -0.02733 
TACAIDS 

[20] 

γ  0.75 +0.01923 Tumwiine [22] 
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Table 1 show that the most sensitive parameter is the 

mosquito biting rate of mosquitoes α  followed by treatment 

rate of exposed human individuals δ . The death rate vµ  of 

mosquitoes is another important parameter in controlling the 

LF epidemic. This is followed by contact rate of infected host 

and susceptible vector hvβ  and the contact rate of infected 

vector with susceptible host vhβ . However, treatment rate 

ε  of infected human to recovery class is another important 

parameter followed by exposed human progression rate ν  

into infected human class. The interpretation of these results is 

that, on controlling the spread of Lymphatic Filariasis 

infections within the population the following should be taken 

into account; reduce mosquitoes biting rate, Increase in 

treatment rate among exposed individuals and increase 

mosquitoes mortality rate. 

5. Numerical Simulation 

In this section, we present numerical simulations of the 

model ( )3 9−  to predict the long term trends for both the 

host and vector population. This study used a set of 

parameter values from different sources from reviewed 

literature (Table 1). Thus, the dynamics of some 

epidemiological class of the model are simulated with time 

as well as the effects of sensitive parameters to illustrate the 

behaviour of the model. 

Figure 3(a), shows that susceptible human population 

increases with time when the biting rate α  of mosquitoes is 

reduced. On the other hand figure 3(b), illustrate that when 

treatment rate δ  of exposed individuals increases then 

susceptible population also increases, this is due to the fact 

that, increase in treatment of exposed individual increases 

the number of recovery human and consequently susceptible 

population increase. Moreover, increase in death rate vµ  of 

mosquito increases the susceptible population with time 

figure 3(c). 

 

Figure 3. Variation of Human Susceptible Population for different values of

,  and vα δ µ . 

 

Figure 4. Variation of Human Infectives Population for different values of

,  and vα δ µ . 

We observe in figure 4(a), that the infected human 

population increases in the level of infection due to the 

increase of mosquito biting rate α . Again, figure 4(b) shows 

that the infectious class reduces as treatment rate of the 

exposed class increase δ . This implies that the introduced 

intervention to exposed class reduces the number of infected 

individuals who shift to infectious class. In figure 4(c), it is 

observed that the infected population reduces when there is an 

increase in mosquito mortality rate vµ . Therefore, we can 

conclude that, when mosquito biting rate is reduced among 

people, and mosquito death rate is increase this can reduce 

their level of lymphatic Filariasis infection as well as reducing 

the disease morbidity from the community.  

 

Figure 5. Variation of Reproduction numbers with different values of delta. 

We ran the system to illustrate the effect of different 

parameter values on the reproduction numbers. These include 

the behaviour of the reproduction numbers when there is only 

treatment of infected individuals and when both exposed and 

infected individuals are involved in treatment. We found that 
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reproduction number tend to decline when intervention is 

practiced to both populations. 

 

Figure 6. Phase plane for Exposed and Infected Human Individuals versus 

Susceptible Human Individuals. 

Figure 6 (a)-(b) illussrate the phase portrait of the dynamics 

of susceptible human and exposed individuals as well as 

infected individuals population showing endemic equilibrium 

point for a given initial conditions as time increases. It can be 

observed that the trajectory for the initial populations end up 

in a situation where there is infected individuals, that is, the 

endemic equilibrium. 

6. Discussion and Conclusions 

A non-linear differential equation model has been 

constructed and analyzed to study the effect of 

chemoprophylaxis in the exposed individuals. Qualitative and 

numerical analysis of the model has been implemented. The 

Disease-free equilibrium and the Endemic equilibrium points 

were obtained and their stability analyzed. The study 

established that, treatment of exposed and symptomatic 

individuals have some effect on reducing the spread of 

lymphatic Filariasis infection. 

Therefore, administration of chemoprophylaxis at early 

stage (asymptomatic infection), prevents the progression of 

LF infection to chronic infection and improve the quality of 

life in the community, but not to the levels necessary for 

disease elimination. This result suggests that effective control 

of lymphatic Filariasis may lie in treatment for both exposed 

and those displaying symptoms as well as control of vectors. 

Interventions targeting reduction in the biting rate of 

mosquitoes and increasing mortality rate of vectors in the 

population is critical in controlling the disease epidemic. 
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