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Abstract: This work explores the Julia and Mandelbrot sets of the Gamma function by extending the function to the entire 

complex plane through analytic continuation and functional equations. Various Julia and Mandelbrot sets associated with the 

Gamma function are generated using the iterative function f (z) = (z)λ Γ + λ , with different parameter λ −  values. To produce 

an accurate result using the integral definition of the Gamma function, a large number of terms would have to be added during the 

numerical integration procedure; this makes computation of Gamma function a very difficult task. To overcome this challenge, 

the Lanczos approximation of the Gamma function which presents an efficient and easy way to compute algorithms for 

approximating the Gamma function to an arbitrary precision is used. The resulting images reveal that the fractal (chaotic) 

behaviour found in elementary functions is also found in the Gamma function. The chaotic nature of the Julia and Mandelbrot 

sets provides a way of understanding complexity in systems as well as just in shapes. 
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1. Introduction 

Julia and its related Mandelbrot sets are typical examples of 

complex dynamical systems which exhibit fractal behaviour. 

Until the advent of modern computers, the complex dynamical 

systems enjoyed low patronage because of the enormous 

nature of their calculations which made them impractical for 

real use. Julia was famous in the 1920s, but his work on 

iteration was essentially forgotten until Benoit Mandelbrot 

brought it back to prominence in the 1970s through the 

fundamental computer experiment [1]; Mandelbrot was the 

first to use computer to produce graphic representation of 

complex dynamical system based on the polynomial and 

rational functions described by Gaston Julia [2]. Braverman [3] 

observed that Julia sets are some of the best known 

illustrations of a highly complicated chaotic system generated 

by a very simple mathematical process. The Mandelbrot sets 

are concerned with the parameter plane only. They are fractals 

and contain some feature like those found in nature such as 

mountains, trees, lightning, waterfalls, etc. 

The Julia and Mandelbrot set have been studied extensively 

over the years using elementary polynomial functions. In 

recent times, the study has been extended beyond the 

elementary functions to a special function (the Riemann zeta 

function) by [4]. This extension to a higher function was the 

first of its kind. [5] presented a construction of famous fractal 

images- Mandelbrot set and Julia set using 3D iterated 

function system which gives real look and feel of complex 

natural fractal images. Also [6] applied Jungck Ishikawa 

iteration to generate new relative superior Mandelbrot sets and 

relative superior Julia sets. 

Our desire is to know how these sets behave with other 

special functions like the Gamma function. The Gamma 

function was only defined for real arguments. It was Carl 
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Friendrich Gauss who first studied Gamma function of 

complex variable. The integral form of the Gamma function is 

referred to as the second Eulerian integral. The Gamma 

function is an extension of the concept of factorial numbers. 

We can input (almost) any real or complex number into the 

Gamma function and find its value. 

However, the definition integral is not very useful in 

computing the Gamma function; to produce an accurate result, 

an insanely high number of terms would have to be added 

during the numerical integration procedure. However, Stirling 

series, Spouge series and Lanczos approximation present 

efficient and easy way to compute algorithms for 

approximating the Gamma function to an arbitrary precision 

[7]. In order to produce the graphic representation of Julia sets 

and Mandelbrot sets, Lanczos Gamma approximation shall be 

used. 

Based on the foregoing, we intend to explore Julia and 

Mandelbrot Sets under the Gamma function and represent 

them pictorially using MATLAB and also discuss the resulting 

representation. 

2. Julia and Mandelbrot Sets 

2.1. Julia Sets 

Gaston Julia worked with Pierre Joseph Louis Fatou on 

multiple iterations of the complex quadratic map  

2f (z) = z z, C.λ + λ λ ∈           (1) 

Julia discovered a set of points whose thn  iterates, 
nfλ  do 

not diverge to infinity as n → ∞ . This set of points form what 

is called filled in− Julia set  whereas the boundary of this set 

is the Julia set . The filled-in Julia set of a polynomial f , 

denoted by Bλ , is the set of all points with bounded orbits 

under f . In symbols,  

nB = {z :| f (z) | as n }.λ λ → ∞ → ∞/½    

TheJulia set of f , denoted by Jλ , is the boundary of the 

filled-in Julia set. Julia sets are not restricted to the function 

(1). For any function Julia sets may be generated. These sets 

vary from function to function. Julia sets can be generally 

classified into connected and disconnected sets [8, 9]. 

2.2. Mandelbrot Sets 

The Mandelbrot set M of a map f (z)λ , for a chosen initial 

iteration value 0
z = z , is the set of values of the complex 

parameter λ  which in the iteration of f (z)λ  in (1) with the 

chosen initial value 0
z , does not lie in the domain of 

attraction of complex infinity [4]. In other words,  

}.lim,:{= ∞→/∈
∞→

  ½M
n

n

fC λλλ  

Though the above definition is for polynomials and not the 

most general for non-polynomials, it is adopted here to study, 

for a start, a particular one-parameter family of the iterated 

maps of the Gamma function, i.e., that of f (z) = (z)λ Γ + λ . 

From 
n n| f (z) | | z | (1 ) ,λ ≥ + ε → ∞

 
it can be determined whether λ  is in Mandelbrot set [8]. A 

way of estimating whether f (z)λ  is bounded for a given λ  

is by checking if the first 50  to 100  iterations of the critical 

point z = 0  stays within a circle of radius 2. By using a 

colouring scheme based on whether orbits escape this circle, a 

picture of M can be built. 

3. Lanczos Gamma Approximation 

The Gamma function (z)Γ  is defined as  

z 1 t

0
(z) = t e dt (z) > 0

∞ − −Γ ℜ∫        (2) 

with the fundamental recurrence relation  

(n 1) = n (n)Γ + Γ                 (3) 

The functional relation (3) can be used to find an analytic 

continuation of the Gamma function for (z) 0ℜ ≤  [10, 11]. 

However, the definition integral (2) is not very useful in 

computing the Gamma function. In order to produce the 

graphic representation of Julia sets and Mandelbrot sets, we 

will need the Lanczos Gamma approximation [12]. 

1
z 1

2 (z r )
2

r

1
(z 1) = 2 z r e S (z)

2

+
− + + Γ + π + + 

 
    (4) 

where  

r 0 1 2

1 z z(z 1)
S (z) = a (r) a (r) a (r)

2 z 1 (z 1)(z 2)

−+ + +
+ + +

…   (5) 

and 

n

n

k=1

2 1
a (r) = C(2n 1, 2k 1) k !

2

 + + − π  
∑ x 

1
(k ) 1

2 k r
2

1
k r e

2

− +
+ + + + 

 
            (6) 

with C(i, j)  denoting the 
th(i, j)  element of the Chebyshev 

polynomial coefficient matrix which can be calculated 

recursively from the identiti 

C(1,1) = 1; C(2,2) = 1
 

C(i,1) = C(i 2,1)i = 3,4,− − …

 
C(i, j) = 2C(i 1, j 1)i = j = 3,4,− − …

 
C(i, j) = 2C(i 1, j 1) C(i 2, j)i > j = 2,3, .− − − − …

 
To derive (4), we use (7) and (8) below which are the 

Stirling's and Spouge's series respectively:  

( )z z(z 1) 2 z z e as | z |−Γ + ≈ π → ∞         (7) 
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(z 1) =Γ + ( )
N1

z (z a) 1/2 k2
0

k=1

c
z a e (2 ) c (z) .

z k

+ +  + π + + ε + 
∑  (8) 

From (2), let t tα → , then dt dtα →  

z t

0
(z 1) = ( t) e dt

∞ −α∴Γ + α α∫
z 1 z t

0
= t e dt

∞+ −αα ∫  

Let = 1 zα + ρ ; > 0ρ , then 

z 1 z (1 z)t

0
(z 1) = (1 z) t e dt

∞+ − +ρΓ + + ρ ∫  

z 1 z zt t

0
= (1 z) t e e dt

∞+ −ρ −+ ρ ∫  

z 1 t z t

0
= (1 z) (te ) e dt

∞+ −ρ −+ ρ ∫  

Introducing 

z

e

e

 ρ
 ρ 

 into the equation and evaluating yields  

z

z 1 t z t

0

e
(z 1) = (1 z) (te ) e dt

e

∞+ −ρ − ρ∴Γ + + ρ ρ 
∫

z 1 z 1 t z t

0
= (1 z) (e ) ( te ) e dt

∞+ − −ρ −+ ρ ρ ρ∫  

Let 1 tv = e −ρ , then 
1 tdv = e dt−ρ−ρ

dv
dt =

v
⇒

−ρ
, 

and 
1 1

t = log v−
ρ ρ

. 

(z 1) =Γ +
1 1

log v0
z 1 z z

e

dv
(1 z) (e ) [v(1 log v)] e

v

 
− − ρ ρ+ −  + ρ ρ −

−ρ∫  

z 1 1 1
log v0

z 1 z 1 z

e

1 dv
= z (e ) [v(1 log v)] e

v

+  
− − ρ ρ+ − −   + ρ ρ ρ − ρ 

∫
z 1 1 1

z 1e
z

0

1
= z e [v(1 log v)] v dv

+
− − −

ρ ρ + − ρ 
∫  

Let 
1

r = 1−
ρ

, then 

e
z 1 (z r 1) z r

0
(z 1) = (z r 1) e [v(1 log v)] v dv+ − + +Γ + + + −∫  

Let 2v(1 log v) = cos− θ , then 
2sin cos

dv = d
log v

θ θ θ ; when 

v = 0 , =
2

πθ −  and when v = e , =
2

πθ . 

(z 1) =+ ( )z 1 (z r 1) r2z2

2

2sin cos
(z r 1) e v dcos

log v

π
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2
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π
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Let 
1

z z
2

− → , then 

r

2z2
r

2

1 2v sin
(z ) = P (z) dcos

2 log v

π

π−

 θΓ + θ θ 
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∫       (9) 

where 

1
z 1

z r2
2

r

1
P (z) = 2 z r e

2

+  − + + 
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The integral in (9) is evaluated using Fourier series 

expansion to give the required result  

1
z 1

2 (z r )
2

r

1
(z 1) = 2 z r e S (z).

2

+
− + + Γ + π + + 

 
 

4. Results 

For the Gamma function (z)Γ , we can generate different 

Julia sets as the value of the parameter λ  varies. 

 

Figure 1. Julia Set of f (z) = (z)λ Γ + λ ; = 0λ . 

 

Figure 2. Julia Set for f (z) = (z)λ Γ + λ ; = 0.621λ − . 
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Figure 3. Julia Set of 
zf (z) = (z) e−

λ Γ + . 

 

Figure 4. The Mandelbrot set for f (z) = (z)λ Γ + λ . 

 

Figure 5. Magnification of the leading frond in Figure 4. 

 

Figure 6. Zoom in of the galaxies on the left in Figure 4. 

Fig. 1 shows the Julia set for f (z) = (z)λ Γ + λ  within 

6.5 (z) 8.5− ≤ ℜ ≤  and 8.5 (z) 8.5− ≤ ℑ ≤ . In the figure is a 

horizontal mast with black patches together with spikes 

proportionate to their various sizes. The arms of the mast 

extend in opposite directions. The black portions represent the 

basins of attraction of the attractor of the fixed point at z = 1  

and those of attracting cycles. The Julia set is the boundaries 

around the mast i.e. the set of complex numbers z = x iy+  

whose orbits remain bounded after a number of iterations. The 

remaining part of the plane are coloured different shadings 

which represent the various rates at which the points escape to 

infinity, with the lighter shades having slower rates, and the 

darker shades, faster rates. There is a reflection symmetry 

about the (z)ℜ -axis due to the complex conjugate property of 

an analytic complex function. 

Two factors are primarily responsible for the change in the 

Julia set–the function and the parameter value. In Figure 2 

showing the Julia set for f (z) = (z)λ Γ + λ within 

12.0 (z) 8.5− ≤ ℜ ≤  and 10.5 (z) 10.5− ≤ ℑ ≤ , the set is 

altered as the parameter value changes. Fig. 3, the Julia set for 
zf (z) = (z) e−

λ Γ +  within 12.0 (z) 8.5− ≤ ℜ ≤  and 

10.5 (z) 10.5− ≤ ℑ ≤ , shows what happens when the function 

is altered. Instead of the function f (z) = (z)λ Γ + λ , the 

function 
zf (z) = (z) e−

λ Γ +  is used.  

For any function that a Julia set is generated, there is always 

a corresponding Mandelbrot set. It is noteworthy that, as 

infinitely many Julia sets are associated with a function, only 

one Mandelbrot set is connected to the function. In Fig. 4 

showing the Mandelbrot set for f (z) = (z)λ Γ + λ  within 

3.5 (z) 8.0− ≤ ℜ ≤  and 10.0 (z) 10.0− ≤ ℑ ≤ , the black region 

which forms the bulk of the plane is the basin of attraction of 

the fixed point and is regarded as the Mandelbrot set for 

f (z) = (z)λ Γ + λ . In this figure, there are infinitely 

manyfronds of varying shadings. Each of them is studded with 

infinite number of smaller fronds all around its boundary 

which are its miniature copies. Fig. 5 and 6 are the 

magnifications of various parts of the Mandelbrot set for 

f (z) = (z)λ Γ + λ  in Fig. 4. 
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Unlike other functions where self-similarity can be spotted 

with the Mandelbrot set, the Gamma function seems to reveal 

the fractal of the complement of the Mandelbrot set. This does 

not imply that the Mandelbrot set has lost its fractal property in 

Gamma function because the boundary of the complement is 

also the boundary of the Mandelbrot set. This only implies that 

self-similarity is not only associated with the Mandelbrot set 

but also its complement. 

In the elementary functions, Mandelbrot set is the set of 

parameters for which orbits of zero is bounded. With special 

functions, the Mandelbrot set is generated by the zeros of the 

function i.e. given the map f (z) = (z)λ Γ + λ  for which the 

initial iteration value 
0

z = z  is a zero of the Gamma function 

(z)Γ , a value of the complex parameter λ  belongs to the 

Mandelbrot set of f  if the iterated value 
n

0f (z )λ  does not 

tend to complex infinity as n → ∞  in the course of iteration. 

5. Conclusion 

The Gamma function was introduced and various Julia and 

Mandelbrot sets associated with it were generated. The 

Lanczos Gamma approximation formula was used to 

approximate values of the Gamma function resulting in the 

production of the images of these sets. This approximation 

was necessary because the built-in Gamma function in 

MATLAB R2010a does not take complex argument. 

The images reveal that the chaotic behaviour found in the 

elementary functions are still present in the Gamma function. 

Although, these behaviour appears to be more conspicuous with 

the complement of the Julia and Mandelbrot sets. The chaotic 

nature of the Julia and Mandelbrot sets can provide a way of 

understanding complexity insystems" as well as just in shapes. 

 

References 

[1] J. J. O'Connor and E. F. Robertson, Gaston maurice Julia, 2008. 
http://www-history.mcs.st-andrews.ac.uk/bibliographies/julia.
html. last checked: November 18, 2015. 

[2] F. Garcia, A. Fernandez, J. Barrallo, and L. Martin, “Coloring 
dynamical systems in the complex plane.” The University of 
the Basque Country, Plaza de O~nati, vol. 2, 2009. 

[3] M. Braverman, “Computational Complexity of Euclidean Sets: 
Hyperbolic Julia Sets are Poly Time Computable.” Master's 
thesis, Graduate Department of Computer Science, University 
of Toronto, Canada, 2004, 96pp. 

[4] S. C. Woon (1998). “Fractals of the Julia and Mandelbrot sets 
of the Riemann Zeta Function.” Trinity College, University of 
Cambridge, CB2 ITQ, UK. Accessed at: 
http://arxiv.org/abs/chao-dyn/9812031v1. 

[5] A. Garg, A. Agrawal and A. Negi. “Construction of 3D 
Mandelbrot Set and Julia Set.” International Journal of 
Computer Applications, 2014, 85(15): 32-36. 

[6] S. Joshi, Y. S. Chauhan, A. Negi. “New Julia and Mandelbrot 
Sets for Jungck Ishikawa Iterates.” International Journal of 
Computer Trends and Technology, 2014, 9(5): 209-216. 

[7] C. Lanczos, “A precision approximation of the gamma 
function.” J. Soc. Indust. Appl. Math. Ser. BNumer. Anal., 
1964, 1:86-96. 

[8] E. R. Scheinerman, Invitation to Dynamical Systems. Dover, 
U.S.A., 2000, p.1. 

[9] L. J. Tingen, The Julia and Mandelbrot sets for the Hurwitz zeta 
function. Master's thesis, Department of Mathematics and 
Statistics, University of North Carolina Wilmington, 2009. 

[10] K. A. Stroud, and D. J. Booth, Advanced Engineering 
Mathematics. Palgrave Macmillan, Houndmills, Basingstoke, 
Hampshire RG21 6XS and 175 Fifth Avenue, New York, N. Y. 
10010, 4th edition, 2003. 

[11] M. Bourne, Factorials and the Gamma function, 2010: 
http://intmath.com/blog/mathematics/factorials-and-the-gamm
a-function-435. Last checked: November 18, 2015. 

[12] G. R. Pugh, “An Analysis of the Lanczos Gamma 
Approximation.” PhD thesis, Department of Mathematics, 
University of British Columbia, 2004. 

 


