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Abstract: In this paper, the author proposed and considered a reaction-diffusion equation with diffusion terms and stage
structure. We discussed the stability of the positive equilibrium. By using the upper-lower solutions and monotone iteration
technique, we obtained the zero steady state and the boundary equilibrium were linear unstable and the unique positive steady
state was globally asymptotic stability. The traditional results are improved and this result applies to broader frameworks.
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1. Introduction

The growth of the species, often needs a process of
development. Meanwhile, different species with different
growth stage showed the different characteristics. So, studying
the population model with stage structure has practical
significance. But, a single population is not too much, each
species must be affected by the other populations and the
environment, so, in recent years, the literature on the two
phase structure of single population was more, see [1, 2 ,3, 4,
5] etc. Among them, Chen Lansun in literature [1] listed some
scholars’ research results. But, the stability of the equilibrium
point on two population model was studied through ordinary
differential equations in [2, 3, 4, 5]. Later, many scholars
began to research the structure of three phase single
population model. Gao Shujing [6] set up for a class of
population model according to the young adults aged three
stages. In 2005, Liang etc [7] established a class of population

model which was divided into a pupa Larvae, adult three
phase structure, Wu [8]studied the global asymptotic stability
of a weakly-coupled reaction diffusion system in the
three-species model. But in these papers, the authors did not
notice the time delay. In fact, the development of population
reproduction has some lag process, literature [9, 10, 11]
considered the time delay on the basis of [6, 7], but, in these
papers the author did not notice the free diffusion phenomena
of the population. Literature [12] studied two species
predator-prey with stage structure and diffusion terms which
considered the effect of diffusion and phase structure. But the
authors considered the species only spreading in the local
scope. The local operator did not accurately describe the
object of study behavior of space and time, therefore, we must
introduce the convolution operator to describe the spatial
diffusion process. On the basis of [12], we considered the
following competition model with diffusion terms and stage
structure:

Ou, (x,t 0°u, (x,t
(gt ) —d, 6)52 ) =-au, (x,t) +au, (x,t) —a’((g1 Duz)(x,t))
Ou, (x,t 0°u, (x,t )
a(t ) —-d, 6)52 ) = a’((g1 Duz)(x,t)) -bu, (x,t) —nu; (x,t) -cu, (x,t) u, (x,t) 1
"’”ﬁf’t) -4, (90 ()= () ety (ot () B ) (301
x
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Where, u,(x,t),u,(x,t) respectively represent the population densities of the juvenile and adult of A at time t and location X,
u,(x,t) represent the population densities of B at time t and location X, d,,d,,d, represent the diffusion rates, a,b,b,
represent the death rate, a,f represent the birth rate, 7,7, represent the density coefficient, ¢,,c, represent the competition
coefficient of adult A, B, The kernel g,(s),g,(s) are inter-tribal and non-negative function satisfying

(x-y)’
4d,s

[T e)ds = [ " g, (s)ds =1, (g, j [Te(s \/4;?6 "y (1 =5, )dyds

_(x~y)
4dys

— u,(t—s,y)dyds

e 1
II gz ¢ \J4rmd,s

All the parameters are positive.

The paper is organized as follows: in section 2, we discuss the locally asymptotic stability between the zero balance and the
boundary of equilibrium; in section 3, we use the upper-lower solutions and monotone iterative methods to discuss the global
stability of the positive equilibrium point.

2. Equilibrium and Local Asymptotic Stability

The variables u,(x,t),u,(x,t) of the system (1) have nothing with u,(x,#), so we need to consider the subsystems of the
system (1):
In (1), let u,(x,t) =u(x,),u,(x,t) = v(x,1), dzédl,d3éd2 , then the system (1) can rewrite following:

Ou(x,t) _ au (x,2) _

=a(g, *u)(x,t) =bu(x,t) = ru’ (x,t) = cu(x,t)v(x,t)

ot 4 A’ 2
PED g, 2 a(f 1) = B, *v)(x, )~ byv(x.0) ~ 1y (x.0) = ey, (5, 0)

, then the system(2)has

+o0 +00 kr >ck k < k
Lemma 2.1 Assume that aJ'O g, ()eds >b,, ,8.[0 g,(s)e¥'ds >b,, { Ak or, { A

k,r, > ¢k, kyr, <

four non-negative equilibrium:

a’J.O g (s)eds=b,

+00 _VZSd .
0 é(kl’o), E, = O’BJ‘O g,(s)e'ds

b P
n = p - 8(0k). E=()

=(0, 0), E =

Where,

(a_[ g, (s)e " ds - ) cl(ﬁj g, (s)e ds - )

u
CICZ
i8] e (s)e‘yzxds—bz)—cz (af" g1 7ds =)
y =
nn =66

To study the asymptotic stability of the equilibrium by using of constant linear methods similar to [13], We introduce the
transformation U(¢) = (u(x, t),v(x,t)) -E (i=12),

U =U{t+ 9)(—T <f< 0) , Then the system (2) Can translate into PFDE of CéC([—T, O] ;Rz) :

%U(t) = DAU(t)+ N(D)U,) + f,(U,.7). 3)

Where, D =diag(D,,D,),N(T):C - R*, f,:CxR" - R*, Then the characteristic equation for the linear part of
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system(3)can become

A+ik2d, —af " g ()" ds + b +2ru +
| . g,(s)e s +b +2ru+cy cu

A+id, = B[ g, (s)e™ K ds + by + 2y +
GV 2 ﬁo g,(s)e S TO, T2HVT U

Let
gAY = A+K2d, —a[ " g (s)e "N ds +by + 2ru + ey
2,(A k)= A+kd, —,Bjom g,(8)e™ D s+ b 42k v+ cu

Then the characteristic equation becomes g, (A,k*)g, (A, k%) —c,c,uv =0,

ki >ck, e :
Theorem 2.1 When , the equilibrium E; = (0,0) is unstable.
k,r, <c,k,

Proof: for the equilibrium E; = (0,0) , the characteristic equation for the system (2) can become g, (A,k%)g,(A,k%) =0

If g ,(A,k*)=0, which yields ()I +k*d, +b —a jo“” g, (s)e'W*“'“”ds) =0.
So, we get|/1 +dk*+ b1| = ‘a’J.O+o° g,(s)e’ +”J'”""z)afs‘ ,

< afj‘om g,(s)eds holds.

if ReA >0 then |A+d,k> +b|= ‘ajom g, (s)e NS g
In the same way, if g,(A,k”)=0, we can have ReA>0.
Thus, E, = (0,0) is unstable.

klrl > ClkZ

, the equilibrium E, is local asymptotic stability and FE, is unstable.
kyr, <cyk,

Theorem 2.2 When {

Proof: for the equilibrium E, , the characteristic equation for the system (2) can become g,(A,k%)g,(A,k*)=0.
(i) If g,(A,k*) =0, which yields, A+k’d, +b, +2rk = ajo“” g, (s)e A g
if ReA >0, then

A+ k2d1 + 2gj0+m g, ()™ ds| = b, + gj(jm g (s)e” "+ ks 1ol < ZO'JOW g (s)e"ds

is contradiction with the suppose, so ReA <0
(ii)if g,(A,k*)=0,then A+k’d, - ﬁjo”" g, (s)e” A g+ b + ¢,k =0 holds.

if ReA>0, then‘/] +k*d, +b, +Czk1| = < ,Bj-omgz(s)e’yzsds

+00 2
IBJ-O 2, (s)e*(}/:“‘*d:k )Sds

is contradiction with the suppose, so ReA<0;
Therefore, the equilibrium £, is local asymptotic stability

By similar way, we can prove the balance E, of that the system (2) is not stable.
klri > ClkZ

, the equilibrium E° is local asymptotic stability.
kyry, > ¢k,

Theorem 2.3 If {
Proof: for the equilibrium E", the characteristic equation for the system (2)can become

(A+dk* - a’Lm g (s)e N+ g 4 b +2ru +cyv A +dk* - ,6’Io+w g, (s)e A+ g 4 b, +2r,v" +cu’)-ce,u v =0.
Since ru’ +cy’ = O'J-Om g (s)eds=b, v +cu = ﬁj-om g,(s)e™"*ds =b,,

we have
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A+d k> +a jo“” g, (s)eds — aj0+°° g,($)e™ D s 4 1y YA +dok + B jo“” g,(s)e ™ ds - 3 j:” g, ($)e™ BB g 4T
—cc,u’v =0
let A=a+bi
A =a+d i +ru + a’Lm g, ()e™ds - a’ﬂm g, () cos bsds
A =a+d kK +ry + ,BJ.OM g,(s)e”ds - [3"[:0 g, ()™ ") cos bsds
Bl . aJ.Om g (S)e—(y. +a+dk*) sin bsds B2 =h+ Bj‘oﬂao 2, (S)e_(yz+a+dzk2) sin bsds
So we can get (4, +Bi)(A4, +B,i) =cc,u’v .
AA,-BB, = clczu*v* 44, = clczu*v* + BB,
AB, +AB =0 AB,+AB =0

Therefore, 4,4, <cc,u™v .ifReA=0,then 4 =ru’, 4, =2rv ,s0 44, Zrru'v >0.

Thereby, r7, <cc, which is contradiction with the suppose.

which yields { , Further, we get {

Therefore, the equilibrium E” is local asymptotic stability.
The methods are also appropriate for a class of food chain system with stage structure. Such as

x(t)=Te™ (x= ) =U . () = a,x(t)y(2)
W(0) = a,x () (1) — d, (1) — a,y(1) ()
2(t) = a,y(0)2(1) — d,2(1)

Where, a,(i=1,2,3,4),d,(i =1,2),T,U,V are positive, x(¢f) represents the population densities of the juvenile and adult at

time t and location x, y(¢),z(¢) respectively represent the middle and top predators.

3. Global Stability

Using the upper-lower solution method and the monotone iterative method to consider the stability the following equations
with the initial-boundary value problem:

Ou, (x,t) 9°u, (x,t)

Py =d, P +a’((g1 Elul)(x,t))—blu1 (x,t)—rlul2 (x,t)—clu1 ()c,t)u2 (x,t)
ou, (x,t 9’ |t
“a(:‘ )oa, ”;)ff )bty ()= (50) s, () () + B, D) () @)

u,(t,x) = @,(t,x), (¢,x) U[-7,0]%[0, 7]
0u, (¢,0) _ Ou, (¢, 1)
Ox Ox

=0, t>0,(i=12)

Definiton 3.1 A pair of smooth function @ = (#,,1,) and u = (4,,u,) are said to be the coupled upper and lower solutions of
problem (4),if @, =4, (i =1,2) in [-7,0]%[0, 77] ,and the following differential inequalities hold
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i, (g;c,t) od azfg )sz,z) var((g 0 ) (x.0)) = by () =i (x.0) =, () iy (2,¢)
aﬁzétx,t) od, azﬁ;)fzx,t) —byit, (ov.t) = 2 (1) = eyt (), (.1) + B2, O, ) (3,0)
0 (x4) g S0t (g 5, i ) )i 5 )
oi, a(txaf) <, "zf‘; )sz”) — by (x,) = yii2 (x.) =y, (1) by (1) + B, T, ) (3,1

Lemma 3.1 If there exists a pair of upper and lower #,u of problem (4) and @,(¢,x) is Holder continue in [-7,0]%[0,77],
then the system (4) has the unique solution (u, (¢, x),u,(t,x)) satisfying @, <u, <u,,(i=12).

Lemma 3.21f ¢,(t,x) is Holder continue in [-7,0]%[0,77], and @,(z,x) 20, ¢,(0,x) Z0 (i =1,2), then the system (4) has
the unique solution.

Lemma 3.3 With the assuming of Lemma 3.2, if u(x,¢) is the solution of the following problem

2 +o pIT
O = DO e[ a0 Gl sYult s, Vs = B )+ Autt, 0, >0, 0[0, 7]

Ou Ou
= (,0)=—(t,x), t>0
ax( ) ax( x)

u(t,x)=@(,x), (t,x)0[-1,0]%[0, 7]

o aj - g(s)eds+4
where, a,>0, jo g(s)ds =1, 420, then, |jmu(x.)=—=" 5 ,x0[0,7] .
t - +oo
Theorem 3.1 1f rr, 2¢c,, §,(t,x)20,9,(0,x) 20 (i =1,2), and let (u,(¢,x),u,(¢,x)) be the solution of the system (4), then
lim s (x.0),u, (x,0)) = (1 ,u3) , uniformly for x 0[0, 7] .

t - +oo

Proof: letK, =]imsupmax u;(x,?). K, =limsupmax u,(x,?)

[+ «]0,7] - +o0 o7

— —) .
Let u, (¢,x),u, (t,x) be the solutions of

—) ,— M
Ou, (x,t) =d, 0°u, (x,t) +ﬂ((gl D71<1>)(x’t))_blu—la> (x,t)—rl [u—lm}z (x,t)

ot ox*
—() 2 M
ot L) g, 20 L) 0 ey [ ) ) ®

—) —O
u, (6L,x)=K,u, (t,x)=K,

Clearly (u_l(l)(t,x),z(l)(t, x)) and (0,0) are the upper and lower solutions of problem (4), and by Lemma 3.1, we get

-
O<su,<u, ,(i=L2)

On the other hand, by Lemma 3.3, we have

R a +wg1(5)eiylsds_b1 . —m B +(’<),g2(~g)ej/zs‘i~5‘_bz
llmul (t,x) - J.O p élgl(o) , llmuz (I, x) - J.O éﬂz(m (6)
t— 4o 1 t— 4o 2
And thus for any sufficiently small & >0, there exists # >0, such that >1,
maxul (xs t) < ﬂl(O) + £, maXuz (xa t) < ﬂz(O) t& (7)

xD[O,IT] xD[O,IT]
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Let u, m(t,x),uz“) (t,x) be the solutions of

) 2
0& =d 0 i + O\ =p 0 ® - oP_. nT®
- allg WU Th| W au, U,

ot Lo’ -
ou, " 8%u,” 1 , 0
= — < ) 1) 1) (1)
o =d, o _bzl’i( - [ﬂ :| +,8(g2|:|12 )_Czul U, (8)

1 1
lﬂm (t.x) = Eul (t, %), Lim(t,x) = Euz (#,x)

Then (u_l(l) (t,x),z(l)(t, x)) and (u, o (t,x),u, m(t, x)) are a pair of upper and lower solutions of problem (4), and by Lemma

—
3.0, weget u' <u <u ,(i=12)

By (7) and (8), we have
ou, %u )
o2 a((a )b =n[w T -au a0 v
0. ® PESRU . )
;21 =d, 0;22 _bZ&a)_rz[u_zm} +,8(g2 Dﬁ(l))‘czu_z(l)(,@(m*'f)

. . . 1 1 s
By the comparison principle, we get u, D>y 0, U, D>y ® where v and v,"" are the upper and lower solutions of

problem
63:) —d 6;;1:” . a((g1 Dvl(”)) - [Vl_m]z —ev (B +¢)
6\:;[(1> _ dz%_z:l)‘bzﬁm -, [V_zm]z +,8(g2 Dﬁ(l)) —ep, V(8O +é€) (10)
v == (t,x),v," =—u,(t,x)
by Lemma 3.3, we have
i) = a’J‘Om g/ (s)eds—b —c, (B +¢€) i) = ﬁj:o g, () ds—b, —c,(B” +¢)
- 4on 7 o0 7

Therefore, we can conclude that

0< 0’1(0) < liminf minul (t,x) < llm supmax (t,x) < ,31(0)

toto o] £ 400 +0.7]
0<a” <]iminf minw (%) < [imswp maxw () < 5" (11)
toto atfo.7] £ oo +[0,7]
- Mg —b —c [ m VS gy — (0)
Where, a1<0>=ajo gi(s)e ds=b —cf, ,O’Z(O)ZBL g (s)eds b, —c, [
i "

Furthermore, for any sufficiently small & >0, there exists ¢ >¢,, such that

m[ir]lgl(”(x,t) >a® -¢, rr[ngl“_z Vxn>al? -¢, t>t, (12)
x[0, 77| x0,

—@) —@ .
Let u, (¢,x),u, (t,x) be the solutions of
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2) —(2)

ou, 0’u —) —@ —oPF —o
alt =d, axlz +a((g1 Cy ))_blul _”1|:“1 :| —al ”_2(1)
—) —0
ou 0% u — —oP —) —@
azt =d, 6)622 ~bu, -rn |:”2 :| +,8(g2 Clu )_Czﬂ(l)”z 13)

—@ —@
u, (t,x)=K,,u, (tx)=K,

By definition 3.1, (u_l(z) (t,x),z(z)(t,x)) and (ulm (t,x),uzm(t,x)) are a pair of upper and lower solutions of problem (4),
and by Lemma 3.1, we get u," <u, < u_l.(z),(i =12)

By (12) and (13), we have

) o, —(2) —@ - —o

. <d, lz +a((g1 L, ))_blul _’i|:u1 } —qu (aéO) —£)

ot Ox (14)
—@) —

ou 0’u — —oP —) —
azt <d, axzz —byu, —r2|:u2 }"'ﬁ(gzwz )_Czuz (al(O)_“:)

. o —@ —@ .
By the comparison principle, we get u, <w", u, <w,", where w®™,w," are the upper and lower solutions of

2
problem

ow® *w® 2
_61 =d, 3 5 +a’((g1 Daw;”)) -bw" -7, |:W1(1):| —ew"(a" - &)
t X
ow,"” 0w, 1 n7? 1 1 0
azt =d, axi _bzwz()_rz[wz(q +,8(g2 Dwz())_czwz()(al( )_‘E) (15)
w® =K w® =K
1 W 2

by Lemma 3.3, we have

af " g(s)e " ds —b ~ (@ - &)

, , B[ g (s)eds=b, —c (@ - &)
hmwl(l)(l,x): s hmwz(l)(t,x): J.O

o +oo rl o +oo 7'2

Therefore we can conclude that

0< 0’1(0) < liminf minul (t,x) < hm supmax (t,x) < ﬂl(l)

f -+ x00,7] 4o x0[0,71]
0< 0’;0) < liminf n}lgluz (t,x) < limsup lfn[a)](uz (t,x) < ,32(1) (16)
t -+ x0dJo, t -+ x[J0, 7|

+00
1 aj g, (s)eds—b —c,a”
where, B =—2

+00

B[ 2 ()eds=b, - c,al”
ﬁ(l) = 0
s 2 -
h n
Itisobviousthat 0<a” <" <BY, 0<a” <B" <p.

Continue this process, we can get the following sequences

+00 s _ _ (k) +00 s B B W
a,m:a.[o g,()e™ds=b —c [, " :,BJ.O g, (s)eds—b, -,

(k)
| )
i n

+00 +oo

W g —p — e g P go— b — g™
’B(M)_G’J.O g (s)eds—b —ca, ’B(M)_,B.[O g, (8)eds—b, —c,a,
1 - > 2 -

H r
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+00 —}/IS _
(0)=a’jo g, (s)e"ds b,

B mg (s)e™ds—b
B = . & : (17

B

4l

And satisfying

0< a'f") < liminf min”1 (t,x) <

4w x00.71]

n

limsuwp max () < B

oo x00,7]

0< 0’;“ < liminf minuz (t,x) < limsup max#. (t,x) < ﬂz(k)

t -t x00,7]

(k+1)  p(k+1) (k) palk)
[a". a0 [O[a. B ],

We need to testify the following a, = B =u,,
Let & — 400 in (17), we derive that

(al _Bl)ri _Cl(az _:82) =0

Which yields {

(@, =B —c,(a,=B)=0
) no -
since
G nh

canget a, = =u,, a,=p8 =u,.
This completes the proof.

aZ :BZ :u;

- +oo x0[0.71]

(k+1)  p(k+l) *) k)
a8 Jo[a. 8]

ar,+cfB, = ajo g, (s)e""ds = b,
a,r, +c,B = [;’L) g,(s)e™ ds = b,
B +ca, = a’L g, (s)e"ds = b,

nB o, = IBJO 8> (s)e™"'ds -b,

(18)

=nr, —cc, >0, system (4) has only zero solution with respect to @, = ,, a, = f3,.Therefore, from(18), we

The methods are also appropriate for a class of cooperation model and Epidemic model with stage structure, and so on. for

example:
Ou, (x,t 0%u, (x,t
l(gf ) 4 (;)Ez ) =a’((g1 Dul)(x’t))_rll’ll2 (x,t)+c1u1 (x,t)u2 (x,[)
Ou, (x,t 0%u, (x,t
2(§t ) ~d, ;x(z ) = B((g, T, ) (x.1)) = 15103 (1) + eyt (x.2)u, (x.1)

Where, the parameters have the same the meanings with consistent.

4. Conclusion

Using of constant linear methods, we considered the
local asymptotic stability; Employing the upper-lower
solutions and monotone iterative methods, we considered
the global stability of the positive equilibrium point about
the competition model with diffusion terms and stage
structure. The conclusions are also appropriate for the
corresponding parabolic-ordinary differential system
(d, =0 for some or all i). Besides, The conclusions are
also appropriate for the predator-prey model and epidemic
model and so on. So, The traditional results are improved
and this result adds to the previous results and applies to
broader frameworks. But, with the increase of the invasive

species, we can study the multi-group reaction diffusion
model in the next few years.
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