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Abstract: In this paper, we present an improved subgradient algorithm for solving a general multi-agent convex 

optimization problem in a distributed way, where the agents are to jointly minimize a global objective function subject to a 

global inequality constraint, a global equality constraint and a global constraint set. The global objective function is a 

combination of local agent objective functions and the global constraint set is the intersection of each agent local constraint set. 

Our motivation comes from networking applications where dual and primal-dual subgradient methods have attracted much 

attention in the design of decentralized network protocols. Our main focus is on constrained problems where the local 

constraint sets are identical. Thus, we propose a distributed primal-dual subgradient algorithm, which is based on the 

description of the primal-dual optimal solutions as the saddle points of the penalty functions. We show that, the algorithm can 

be implemented over networks with changing topologies but satisfying a standard connectivity property, and allow the agents 

to asymptotically converge to optimal solution with optimal value of the optimization problem under the Slater’s condition. 

Keywords: Consensus, Saddle Point, Distributed Optimization, Subgradient Algorithm 

 

1. Introduction 

In recent years, distributed optimization and control have 

developed rapidly, and have been welcomed in the fields of 

industry and national defense, including smart grid, sensor 

network, social network and information system (Cyber-

Physical system). Distributed optimization problems of 

multi-agent systems appear different kinds of distributed 

processing issues such as distributed estimation, distributed 

motion planning, distributed resource allocation and 

distributed congestion control [1-12]. The main focus is to 

solve a distributed optimization problem where the global 

objective function is composed of a sum of local objective 

functions, each of which is only known by one agent. 

Distributed optimization problems were first studied 

systematically in [1] where the union of the graphs was 

assumed to be strongly connected among each time interval 

of a certain bounded length and the adjacency matrices were 

doubly stochastic. A distributed subgradient method was 

introduced to solve the distributed optimization and error 

bounds on the performance index functions were given. As a 

continuation of [1], a distributed subgradient projection 

algorithm was developed in [2] for distributed optimization 

where each agent was constrained to remain in a closed 

convex set and the paper gave corresponding convergence 

analysis on identical closed convex sets and on fully 

connected graphs with non-identical closed convex sets. 

Inspired by the works of [1, 2], the algorithms proposed in 

[1] and [2] were studied in the random environment [3] and 

[4], where the agents had the same state constraint. In [5], the 

communication topology was undirected and each possible 

communication link was functioning with a given probability. 

Thus, the expected communication topology is essentially 

fixed and undirected. Different from [1]-[5], a dual averaging 

subgradient algorithm was developed and analyzed for 

randomized graphs under the assumption that all agents 

remain in the same closed convex set in [6] and it was shown 

that the number of iterations were required by their algorithm 

scales inversely in the spectral gap of the network. Moreover, 

distributed optimization problems with asynchronous step-
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sizes or inequality-equality constraints or using other 

algorithms were studied in [7]-[12] and corresponding 

conditions were given to ensure the system converge to the 

optimal point or its neighborhood. However, as in [1]-[5], it 

was assumed in [6]-[12] that the state sets of agents to be 

identical or the objective function finally converge to only a 

neighborhood of the optimal set. 

In this paper our work is to extend [14] to study the 

penalty primal-dual subgradient projection algorithm in a 

more general method. In [14], the authors solved a multi-

agent convex optimization problem where the agents subject 

to a global inequality constraint, a global equality constrain 

and a global constraint set. In order to solved these 

constraints, the author in [14] presented two different 

distributed projection algorithms with three assumptions that 

the union of the graphs is assumed to be strongly connected 

among each time interval of a certain bounded length and the 

adjacency matrices were doubly stochastic and non-

degeneracy. However, [14] guaranteed the edge weight 

matrices of graphs were doubly stochastic (i.e., 

1 ( ) 1N

j ija k= =∑  for all i V∈  and 0k ≥ , and 1 ( ) 1N

i ija k= =∑  

for all j V∈  and 0k ≥ ). Previous work did not perform 

well on the application of the distributed algorithms in multi-

agent network. 

Contributions: The subgradient algorithm (we proposed) is 

different with the approach proposed in [14] in properties and 

analysis. In our approach, the communication topology is 

without loss of generality. This paper does not recur to the 

assumption that the adjacency matrices are doubly stochastic, 

and we only require the network is weight-balanced, which 

makes our algorithm more practical. In this paper, we 

consider a general multi-agent optimization problem where 

the main focus is to minimize a global objective function 

which is a sum of local objective functions, subject to global 

constraints, including an inequality constraint, an equality 

constraint and a (state) constraint set. Each local objective 

function is convex and only known by one particular agent. 

On the other hand, the inequality (resp. equality) constraint is 

given by a convex (resp. affine) function and known by all 

agents. Each node has its own convex constraint set, and the 

global constraint set is defined as their intersection. 

Particularly, we assume that the local constraint sets are 

identical. Our main interest is in computing approximate 

saddle points of the Lagrangian function of a convex 

constrained optimization problem. To set the stage, we first 

study the computation of approximate saddle points (as 

opposed to asymptotically exact solutions) by using the 

subgradient method with a constant step-size. We consider 

constant step-size rule because of its simplicity and practical 

relevance, and because our interest is in generating 

approximate solutions in finite number of iterations.  

The paper is organized as follows. In Section II, we give 

some basic preliminaries and concepts. Then, in Section III, 

we present our problem formulation as well as distributed 

consensus algorithm preliminaries. We then introduce the 

distributed penalty primal-dual subgradient algorithm with 

some supporting lemmas and continue with a convergence 

analysis of the algorithm in Section IV. Furthermore, the 

properties of the algorithm are explored by employing a 

numerical example in Section V. Finally, we conclude the 

paper with a discussion in Section VI. 

2. Preliminaries and Notations 

In this section, we first introduce some preliminary results 

about graph theory, the properties of the projection operation 

on a closed convex set and convex analysis (referring to [13], 

[14]). 

A. Algebraic Graph Theory 

The communication among different nodes in an 

information interplay network can be modeled as a weighted 

directed graph { , , }G V E A= , where {1,2,..., }V N=  is the set 

of nodes with i  representing the i th node, E V V⊆ ×  is the 

edge set, and ( )ij N NA a ×=  is the weighted adjacency matrix 

of G  with nonnegative adjacency elements ija  and zero 

diagonal elements. A directed edge ( , )ji j ie v v=  implies that 

node j  can reach node i  or node i  can receive information 

from node j . If an edge ( , )j i E∈ , then node j  is called a 

neighbor of node i  and 0ija > . The neighbor node set of 

node i  is denoted by iN , while we define | |iN  as the 

number of neighbors of node i . The Laplacian matrix 

( )ij N NL l ×=  associated with the adjacency matrix A  is 

defined by ,ij ijl a i j= − ≠ ; 
1,

N

ii ijj j i
l a

= ≠
= ∑ , which ensures 

that 
1

0
N

ijj
l

=
=∑ . The Laplacian matrix L  has a zero 

eigenvalue, and the corresponding eigenvector is 1N . Note 

that the Laplacian matrix L  of a directed graph G  is 

asymmetric. The in-degree and out-degree of node i  can be 

respectively defined by the Laplacian matrix as : 

in 1,
( )

N

i ij iij j i
d v l l

= ≠
= − =∑  and out 1,

( )
N

i jij j i
d v l

= ≠
= −∑ . A 

directed path from node j  to node i  is a sequence of edges 

1 1 2( , ), ( , ),..., ( , )mj i i i i i  in the directed graph G  with distinct 

nodes , 1,2,...,ki k m= . A directed graph is strongly connected 

if for any two distinct nodes j  and i  in the set V , there 

always exists a directed path from node j  to node i . A 

graph is called an in-degrees (or out-degrees) balanced graph 

if the in-degrees (or out-degrees) of all nodes in the directed 

graph are equal. A directed graph with N  nodes is called a 

directed tree if it contains 1N −  edges and there exists a root 

node with directed paths to every other node. A directed 

spanning tree of a directed graph is a directed tree that 

contains all the network nodes. 

B. Basic Notations and Concepts 

The following notion of saddle point plays a critical role in 

our paper.  

Definition 1 (Saddle point): Consider a convex-concave 

function :L X M V R× × → , where X , M  and V  are 

closed convex subsets in nR  and mX M V R× × → . We are 
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interested in computing a saddle point 
* * *

( , , )x µ λ  of 
* * *

( , , )H x µ λ  over the set X M V× × , where a saddle point 

is defined as a vector pair 
* * *

( , , )x µ λ  that satisfies 

* * * * * *
( , , ) ( , , ) ( , , )H x H x H xµ λ µ λ µ λ≤ ≤ , for all 

, ,x X M Vµ λ∈ ∈ ∈  

In this paper, we do not assume the function 
[ ]i

f  at some 

points are not differentiable, and the subgradient plays the 

role of the gradient. 

Definition 2 : For a given convex function : nF R R→  

and a point nx R∈⌢ , a subgradient of the function F  at x
⌢

 is a 

vector ( )
n

DF x R∈ɶ  such that the following subgradient 

inequality holds for any nx R∈ : 

( ) ( ) ( ) ( )DF x x x F x F x
Τ − ≤ −⌢ ⌢ ⌢

 

Similarly, for a given concave function : mG R R→  and a 

point 
m

Rµ ∈⌣ , a supgradient of the function G  at µ⌣  is a 

vector ˆ ( ) mDG Rµ ∈  such that the following supgradient 

inequality holds for any 
m

Rµ ∈ : 

ˆ ( ) ( ) ( ) ( )DG G Gµ µ µ µ µΤ − ≥ −⌣ ⌣ ⌣
 

We use [ ]XP x  to denote the projection of a vector x  on a 

closed convex set X , i.e. 

[ ] arg min || ||X
x X

P x x x
∈

= −  

In the subsequent development, the properties of the 

projection operation on a closed convex set play an important 

role. In particular, we use the projection inequality, i.e., for 

any vector x  

T
( [ ] ) ( [ ]) 0X XP x x y P x− − ≥  for all y X∈        (1) 

We also use the standard non-expansiveness property, i.e. 

|| [ ] [ ] || || ||
X X

P x P y x y− ≤ −  for any x  and y        (2) 

In addition, we use the properties given in the following 

lemma. 

Lemma 2.1: Let X  be a nonempty closed convex set in 
nR . Then, we have for any nx R∈ , 

(a) 
T 2

( [ ] ) ( [ ]) || [ ] ||X X XP x x y P x P x x− − ≤ − − , for all 

y X∈ . 

(b) 
2 2 2

|| [ ] || || || || [ ] ||X XP x y x y P x x− ≤ − − − , for all 

y X∈ . 

Proof: 

(a) Let nx R∈  be arbitrary. Then, for any y X∈ , we 

have 

T T T( [ ] ) ( ) ( [ ] ) ( [ ]) ( [ ] ) ( [ ] )X X X X XP x x x y P x x x P x P x x P x y− − = − − + − −
By the projection inequality [cf. (1)], it follows that 

T
( [ ] ) ( [ ] ) 0X XP x x P x y− − ≤  

implying 

T 2
( [ ] ) ( [ ]) || [ ] ||X X XP x x y P x P x x− − ≤ − − , for all y X∈  

(b) For an arbitrary nx R∈  and for all y X∈ , we have 

2 2 2 2 T|| [ ] || || [ ] || || [ ] || || || 2( [ ] ) ( )X X X XP x y P x x x y P x x x y P x x x y− = − + − = − + − + − −  

By using the inequality of part (a), we obtain 

2 2 2
|| [ ] || || || || [ ] ||X XP x y x y P x x− ≤ − − − , for all y X∈  

Part (b) of the preceding lemma establishes a relation 

between the projection error vector and the feasible 

directions of the convex set X  at the projection vector. 

The following notations besides those aforementioned will 

be used throughout this paper. nR  denotes the set of all n -

dimensional real vector spaces. Given a set S , we denote 

co( )S  by its convex hull. We write Tx  or TA  to denote the 

transpose of a vector x  or a matrix A . We let the function 

[ ] :
+⋅  0

m m
R R≥→  denote the projection operator onto the non-

negative orthant in mR . Denote 
T

1 (1,...,1)
m

m R= ∈  and 
T

0 (0,..., 0)
m

m R= ∈ . For a vector nx R∈ , we denote 
T

1| | (| |, ..., | |)nx x x= , while || ||x  is the standard Euclidean 

norm in the Euclidean space. In this paper, the quantities 

(e.g., functions, scalars and sets) associated with agent i  will 

be indexed by the superscript [ ]i . 

3. Problem Statement 

We consider a multi-agent network model. The nodes 

connectively at time 0k ≥  can be represented by a directed 

weighted graph ( ) ( , ( ), ( ))G k V E k A k= , where ( )E k  is the 

set of activated edges at time k , i.e., edge ( , ) ( )j i E k∈  if 

and only if node i  can receive data from node j , and 

( ) [ ( )] N N

ijA k a k R ×= ∈  is the adjacency matrix, in which

( ) 0ija k ≥  is the weight assigned to the edge ( , )j i  at time k . 

Please note that the set ( ) \ ( )E k V V diag V⊂ ×  is the set of 

edges with non-zero weights ( )ija k . In this paper the agents 

are to correspondingly solve the following optimization 

problem: 

[ ]
1

min ( ) ( ), s. t . ( ) 0, ( ) 0,
n

N i

ix R
f x f x g x h x x X

=∈
= ≤ = ∈∑   (3) 

where 
[ ]

:
i n

f R R→  is a convex objective function of 

agent i , and X  is a nonempty, closed, compact and convex 

subset of nR . In particular, we study the cases where the 

local constraint sets are identical i.e., [ ]iX X=  for each 

agent, and x  is a global decision vector. Assume that 
[ ]i

f  is 

only known by agent i . The function :
n

g R R→  is known 

by all the agents with each component g
ℓ , for {1,..., }m∈ℓ , 
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being convex. The inequality ( ) 0g x ≤  is component-wise; 

i.e., ( ) 0g x ≤
ℓ , for all {1,..., }m∈ℓ , and represents a global 

inequality constraint. The function : nh R R→ , represents a 

global equality constraint, and is known by all the agents. Let 
*

f  denote the optimal value of (3) and *x  denote an optimal 

solution of (3). We assume that the optimal value 
*

f  to be 

finite. We also represent the optimal solution set by *X , i.e., 

* [ ] *

1
{ | ( ) }

nn i

i
X x R f x f

=
= ∈ =∑ . We will assume that in 

general f  is non-differentiable. 

To generate optional solutions to the primal problem of Eq. 

(3), we consider optional solutions to its dual problem. Here, 

the dual problem is the one arising from penalty relaxation of 

the inequality constraints ( ) 0g x ≤  and equality constraints 

( ) 0h x = . Note that the primal problem (3) is trivially 

equivalent to the following: 

min ( ), s. t . ( ) 0, ( ) 0,
n

x R

f x Ng x Nh x x X
∈

≤ = ∈  

with associated dual problem given by  

,

max ( , ), s. t . 0, 0
m v P

R R

q
µ λ

µ λ µ λ
∈ ∈

≥ ≥  

Here 0 0:
m v

Pq R R R≥ ≥× →  is the penalty dual function 

defined by ( , ) inf ( , , )P x Xq H xµ λ µ λ∈= , where 

0 0:
n m v

H R R R R≥ ≥× × →  is the penalty function given by 

( , , ) ( ) [ ( )] | ( ) |H x f x N g x N h xµ λ µ λΤ + Τ= + + . We often 

refer to vector ,
m v

R Rµ λ∈ ∈  with 0, 0µ λ≥ ≥  as two 

multiplier. We denote the dual optimal value by 
*

q  and the 

dual optimal set by *M . We define the penalty function 

[ ]
0 0( , , ) :

i n m vH x R R R Rµ λ ≥ ≥× × →  for each agent i  as 

follows: [ ] [ ]
( , , ) ( )

i i
H x f xµ λ = +  [ ( )] | ( ) |g x h xµ λΤ + Τ+ . In 

this way, we have that 
[ ]

1
( , , ) ( , , )

N i

i
H x H xµ λ µ λ

=
=∑ . We 

say that there is zero duality gap if the optimal value of the 

primal and the dual problems are equal, i.e., 
* *

f q= . As 

proven in the following lemma, the Slater’s condition in 

Assumption 3.1 ensures zero duality and the existence of 

penalty dual optimal solutions. 

Assumption 3.1 (Slater’s Condition): There exists a vector 

x  such that ( ) 0g x <  and ( ) 0h x = . And there exists at least 

one interior x  of X , i.e. x X∈ , problem (3) has finite 

optimal solution, and 
[ ]

1

N i

iX X== ∩  has nonempty interior 

point. 

Lemma 3.1: Let the Slater condition holds, the values of 
*

f  and 
*

q coincide, and *M  is non-empty. 

Proof: Define Lagrangian function 0 0:
n m v

aL R R R R≥ ≥× × →  

as ( , , ) ( ) ( )aL x f x N g xµ λ µΤ= + ( )N h xλΤ+ , with the 

associated dual problem defined by 

,

max ( , ), s. t . 0
m v a

R R

q
µ λ

µ λ µ
∈ ∈

≥                   (4) 

Here, the dual function, ( , ) inf ( , , )a a
x X

q L xµ λ µ λ
∈

= . The 

dual optimal value of problem (7) is denote by *a  and the set 

of dual optimal solutions is denoted by 
*

Q . Since X  is 

convex, f  and g
ℓ , for {1,..., }m∈ℓ , are convex, and 

*
f  is 

finite and the Slater’s condition holds, we can conclude that 
* *

f a=  and 
*

Q ≠ ∅ . We now proceed to characterize 
*

q  

and *M . Pick any 
* * *

( , )aq Qµ λ ∈ . Since 
*

0µ ≥ , then  

* * * * *

* * * * *

( , ) inf{ ( ) ( ) ( ) ( ) ( )}

inf{ ( ) ( ) [ ( )] | | | ( ) |} ( , | |)

a
x X

P
x X

a q f x N g x N h x

f x N g x N h x q q

µ λ µ λ

µ λ µ λ

Τ Τ

∈

Τ + Τ

∈

= = + +

≤ + + = ≤
                            (5) 

On the other hand, pick any * *x X∈ . Then *x  is feasible, 

i.e., *x X∈  
*

[ ( )] 0g x
+ =  and 

*
| ( ) | 0h x = . It implies that 

* * *
( , ) ( , , ) ( )q H x f x fµ λ µ λ≤ = =  holds for any 0

m
Rµ ≥∈  

and 0

v
Rλ ≥∈ , and thus 

0 0

* * *sup ( , )
m vR R

q q f a
µ λ

µ λ
≥ ≥∈ ∈

= ≤ = . 

Therefore, we have 
* *

f q= . 

To prove the non-empty of *M , we pick any 
* * *

( , ) Qµ λ ∈ . From (5) and 
* *

a q= , we can see that 

* * *
( ,| |) Mµ λ ∈  and thus *

M ≠ ∅ . 

Throughout this paper, we use the following assumption 

for problem (3). 

Assumption 3.2: Let the following conditions hold: 

1)  The set X  is closed and convex. 

2)  Each function 
[ ]

:
i n

f R R→  is convex. 

3)  All functions 
[ ]i

f  have Lipschitz gradients with a 

constant
[ ] [ ]

:|| ( ) ( ) ||
i i

L Df x Df y− ≤ || ||L x y− for all ,
n

x y R∈ . 

4)  The gradients 
[ ]

( ),
i

Df x i V∈  are bounded over the set 

X , i.e., and there exists a constant G  such that 
[ ]

|| ( ) ||
i

Df x G≤  for all x X∈  and all i V∈ . 

When each 
[ ]i

f  has Lipschitz gradient with a constant iL , 

assumption 3.2(3) is satisfied with max
i V

L L
∈

= . When X  is 

compact, the Assumption 3.2(4) holds. We here make the 

following assumptions on the network communication graphs 

( )G k . 

Assumption 3.3 (Non-degeneracy): There exists a constant 

0α >  such that ( )iia k α≥ , and ( )ija k , for i j≠ , satisfies 

( ) {0} [ ,1]ija k α∈ ∪ , for all 0k ≥ . 

Assumption 3.4 (Weight-balanced): ( )G k  is weight-

balanced if out in( ) ( )d v d v= , for all v V∈ . 

Assumption 3.5 (Periodical Strong Connectivity): There is 

a positive integer B  such that, for all 0 0k ≥ , the directed 

graph 
1

0 0( , ( ))
B

kV E k k
−
= +∪  is strongly connected. 
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Lemma 3.2 （Saddle-point Theorem）: The pair of 
* * *

( , , )x µ λ  is a saddle point of the function H  over 

0 0

m v
X R R≥ ≥× ×  if and only if it is a pair of primal and penalty 

dual optimal solutions and the following penalty minimax 

equality holds: 

0 0 0 0( , ) ( , )

sup inf ( , , ) inf sup ( , , )
m v m vx X x X

R R R R

H x H x
µ λ µ λ

µ λ µ λ
≥ ≥ ≥ ≥

∈ ∈∈ × ∈ ×
=

 

Based on this characterization, we will use the subgradient 

method of the following section for finding the saddle points 

of the penalty function. We denote ( , )w µ λ= , for each 

0 0

m v
w R R≥ ≥∈ ×  and we define the function [ ]

:
i n

wH R R→  as 

[ ]
( ) ( , )

i i

wH x H x w= . Note that [ ]
( )

i

wH x  is convex in x  by 

using the fact that a nonnegative weighted sum of convex 

functions is convex. For each x R∈ , we define the function 
[ ]

0 0( ) :
i m v

xH x R R R≥ ≥× →  as [ ] [ ]
( ) ( , )

i i

xH w H x w= . It is easy to 

check that [ ]
( )

i

xH w  is concave in w . Then the penalty 

function ( , )H x w  is the sum of convex-concave local 

functions. 

Lemma 3.3 (Dynamic Average Consensus Algorithm) 

[21] : The following is a vector version of the first-order 

dynamic average consensus algorithm with 
[ ] [ ]

( ), ( )
i i n

x k k Rξ ∈ : 

[ ] [ ] [ ]

1
( 1) ( ) ( ) ( )

Ni j i

ijj
x k w k x k kξ

=
+ = +∑  

We set [ ] [ ]
( ) max ( ) min ( )

i i

i V i Vk k kξ ξ ξ∈ ∈∆ = −
ℓ ℓ ℓ

 for 

1 n≤ ≤ℓ . The sequences of ( ) [ ( )]ijW k w k=  satisfy 

1
( ) 1

N

ijj
w k

=
=∑  and 

1
( ) 1

N

iji
w k

=
=∑ . Suppose that periodical 

strong connectivity Assumption 3.5 holds. Assume that 

lim ( ) 0
k

kξ
→+∞

∆ =
ℓ  for all 1 n≤ ≤ℓ  and all 0k ≥ . Then 

[ ] [ ]
lim || ( ) ( ) || 0

i i

k
x k x k

→+∞
− =  for all ,i j V∈ . 

Proof: Define 

[ ] [ ] [ ]

max min

( ) max ( ) ( ) min ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) max ( ) ( ) min ( )

i i
i Vi V

i i i

i i
i Vi V

M t x t m t x t

D t M t m t r t r t r t h

r t r t r t r t

∈∈

∈∈

= =

= − ∆ = − −
∆ = ∆ ∆ = ∆

 

where 
[ ]

( )
i

r t  is referred to as the reference signal (or 

input) of node i  at time t . 

We propose the First-Order Dynamic Average Consensus 

Algorithm below to reach the dynamic average consensus: 

( ) ( ) ( )( ( ) ( )) ( )i i ij j i ij i
x t h x t w t x t x t r t

≠
+ = + − + ∆∑  

Let 0s ≥  and k V∈  be fixed. Then for every {1,..., }n∈ℓ , 

there exists a real number 0η >
ℓ  such that for every integer 

[ ,( 1)]P B nB B∈ + −ℓ , and i D∈
ℓ , it holds that for t s ph= +  

1

min0
( ) ( ) ( ) ( ( ) ( ))

p

i kq
x t m s r s qh x s m sη−

=
≥ + ∆ + + −∑ ℓ     (6) 

1

max0
( ) ( ) ( ) ( ( ) ( ))

p

i kq
x t M s r s qh M s x sη−

=
≤ + ∆ + + −∑ ℓ   (7) 

Without loss of generality, we only consider the case 

where 0s = , being identical with the proof for a general s . 

Fixing some i , it holds that 

( ) ( ) ( )( ( ) ( )) ( )i i ij j i ij i
x t h x t w t x t x t r t

≠
+ = + − + ∆∑  

Let 0t = , we have that 

min

min

( ) (0) (0)( (0) (0)) (0)

(1 (0)) (0) (0) (0) (0)

(1 (0)) (0) (0) (0) (0)

(0) (0)

i i ij j i ij i

ij i ij j ij i j i

ij ijj i j i

x h x w x x r

w x w x r

w m w m r

m r

≠

≠ ≠

≠ ≠

= + − + ∆

= − + + ∆

≥ − + + ∆

= + ∆

∑
∑ ∑

∑ ∑
 (8) 

Since (8) holds for all i , 

min(0)) (0( )m rm h ≥ + ∆                         (9) 

Applying recursive method, it follows that  

1

min0
(0) ( )( )

t

h
p

m r phm t
−

=
≥ + ∆∑                 (10) 

Since 
1

( ) 1
N

kjj
w t

=
=∑ at every 0t > , we have that 

min0

1

min min1 1 1 0

1

min min1 0

1

min0

( ) (0) ( )

( ) ( ) ( ) ( ) (0) ( ) ( ) ( )

( )( ( ) (0) ( )) ( ) ( )

( )( ( ) (0) ( )

t

h
k p

t
N N N

h
kj j k kj kjj j j p

t
N

h
kj j kj p

t

h
kk k p

x t h m r ph

w t x t r t w t m w t r ph r t

w t x t m r ph r t r t

w t x t m r ph

=

−

= = = =

−

= =

−

=

+ − − ∆

= + ∆ − − ∆ − ∆

= − − ∆ + ∆ − ∆

≥ − − ∆

∑

∑ ∑ ∑ ∑

∑ ∑

∑
1

min0

)

( ( ) (0) ( ))
t

h
k p

x t m r phω −

=
≥ − − ∆∑

 (11) 

where we are using the property of (10) in the last two inequalities. Applying repeatedly (11), we have that, for any integer 

[ ,( 1)]P B B B∈ + −ℓ ℓ , the following holds for t ph=  
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1 1

min min0

0

( ) (0) ( ) ( ( ) (0) (0))

( (0) (0)) ( (0) (0))

p p

k kq

p

k k

x t m r qh x h m r

x m x m

ω

ω η

− −
=

− − ∆ ≥ − − ∆

≥ − ≥ −

∑
 

where 
1

0

NBη ω −= . 

Now we proceed by induction on ℓ . Suppose that (6) holds for some 0 n≤ ≤ℓ ; then we should show (6) for 1i N +∈
ℓ . By 

the induction hypothesis, we have that for all integer [ ,( 1)]P B B B∈ + −ℓ ℓ , there exists some 0η >
ℓ  such that the following 

holds for t ph=  

1

min0
( ) (0) ( ) (0) (( )0)

p

j kx t m r qh x m
τ

η−

=
− − ∆ ≥ −∑ ℓ  

Consequently, as in (11), we have 

1

min min0 0
( ) (0) ( ) ( )( ( ) (0)

( (0) ( )

)

)

( )

0

t t

h h
i ij iq q

k

x t h m r qh w t x t m r h

x m

q

ωη

′ ′
−

= =
′ ′ ′+ − − ∆ ≥ −

≥ −

− ∆∑ ∑
ℓ

 

Following along the same lines as in (11), we obtain min0 1( ) (0) ( ) ( (0) (0))
p

ki q
x t q xh m r h mη +=

′ + − − ∆ ≥ −∑ ℓ  for all 

[( 1) , ( 1)]P B B B∈ + + −ℓ ℓ  where 
( )

1

N Bη ω η−
+ = ℓ

ℓ ℓ  and t ph= . This establishes (6) for 1i N +∈
ℓ . By induction, we have shown 

that (6) holds. The proof for (7) is analogous. 

Let 
1

( 1) 1
2

N N B

η ω
+ −

= , then η η≤
ℓ  for any {1,..., 1}N∈ −ℓ . By replacing s  and t  in (4) with t  and 1 ( 1)t t LB B h= + + −  

respectively. We have that for every 0t ≥  

1

1

1

1 1 min
{0,..., } {0,..., }

1

min

( ) min min ( ) ( ) ( ) min ( ( ) ( ))

( ) ( ) ( ( ) ( ))

t

h
ti k

L i D Lq
h

t

h
t k

q
h

m t x t m t r qh x t m t

m t r qh x t m t

η

η

−

∈ ∈ ∈=

−

=

= ≥ + ∆ + −

≥ + ∆ + −

∑

∑

ℓ

ℓ
ℓ ℓ

 

 

Similarly, we can see that 

1 1

1 max( ) ( ) ( ) ( ( ) ( ))

t

h
t k

q
h

M t M t r qh M t x tη
−

=
≤ + ∆ − −∑  

Combining the above two inequalities gives that 

1 1

1( ) (1 ) ( ) ( )

t

h
t

q
h

D t D t R qhη
−

=
≤ − + ∆∑  

Denoting ( 1)kT k NB h= −  for an integer 1k ≥ . From (9), 

we know that ( ) ( ) ( )D t h D t R t+ ≤ + ∆ . Thus we have 

( ) (1 ) (0) ( )
n

nD T D nη≤ − + Ω  

where 

1 111

10
( ) (1 ) ( ) ... ( )

n

n

TT
n hh

Tq q
h

n R qh R qhη
−−−

−= =
Ω = − ∆ + + ∆∑ ∑ . 

For any 0t ≥ , let tℓ  be the largest integer such that 

( 1)t NB h t− ≤ℓ , and 
1

( ) ( ) ( )
t

t

h
Tt

q
h

t R qh
−

=
Ω = Ω + ∆∑ ℓ

ℓ . Thus for 

all 0t ≥  it follows that 

1

1
( 1)

( ) ( ) ( )

(1 ) (0) ( )

(1 ) (0) ( )

t

t

t

h
Tt

q
h

t

NB h

D t D R qh

D t

D t

η

η

−

=

−
−

≤ + ∆

≤ − + Ω

≤ − + Ω

∑ ℓ

ℓ

ℓ

                (12) 

Since ( )R t hθ∆ ≤  and ( )D t  are input-to-output stable with 

ultimate bound 
1

( 1) 1
2

1
4 ( 1) 4 ( 1)

N N B

h NB h NB wθ θ
η

− + +
Ξ ≤ − ≤ − ; i.e., 

there exist 0Γ >  and 0 1λ≤ ≤ such that 

( ) max{ , }, 0
t

hD t tλ≤ Γ Ξ ∀ ≥  

Choosing as initial state (0) ( )i ix r h= −  for all 

{1,..., }i N∈ . Since ( ) ( )( ( ) ( ))i ij j ij i
x t h w t x t x t

≠
+ = − +∑

( ) ( )i ix t r t+ ∆ , we can deduce that  
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[ ]

1 1 1

[ ]

1 1 0

[ ]

1 1 1

( ) ( ) ( )

(0) ( )

(0) ( ( ) ( )) ( )

N N Ni

i ii i i

t
N Ni

h
ii i q

N N Ni

i i ii i i

x t h x t r t

x r qh

x r t r h r t

= = =

= = =

= = =

+ = + ∆

= + ∆

= + − − =

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 (13) 

It follows from (13) that 
1

1
( ) ( ) ( )

N

ii
m t h r t M t h

N =
+ ≤ ≤ +∑  

and thus 

1

1
max limsup | ( ) ( ) | limsup ( )

N

i iit ti V
x t r t h D t

N =→∞ →∞∈
− − ≤ ≤ Ξ∑  

Let lim ( ) 0
t

R t
→∞

∆ = , for any 0h > . The implementation of 

the Dynamic Average Consensus Algorithms ensures that 

lim 0
t → ∞

Ξ = . So we can conclude that  

lim sup | ( ) ( ) | lim sup ( ) 0i j
t t

x t x t D t
→∞ →∞

− ≤ ≤  

Thus, limsup ( ) ( ) 0i j
t

x t x t
→∞

− =  holds. 

Consider the following Distributed projected subgradient 

algorithm proposed in [13]: Suppose n
Z R⊆  is a closed and 

convex set. Let [ ] [ ] [ ]
( 1) [ ( ) ( ) ( )]

i i i

Z xx k P v k k d kα+ = − . Denote 

[ ] [ ] [ ] [ ]
( ) [ ( ) ( ) ( )] ( )

i i i i

Z x xe k P v k k d k v kα= − − . The following is a 

slight modification of Lemma 8 and its proof in [13]. 

Lemma 3.4: Let the non-degeneracy Assumption 3.3, the 

weighted-balanced Assumption 3.4, and the periodic strong 

connectivity Assumption 3.5 hold. Then there exist 0γ >  

and (0,1)β ∈  such that 

[ ] [ ] [ ] [ ]

[ ]

1

0

1

0

ˆ|| ( ) ( ) || { ( ) || ( ) || || ( ) ( ) ( ) ||}

|| (0) ||

− −
=

−
=

− ≤ + +

+

∑

∑

ki i i ik

N ik

i

x k x k N d e d

N x

τ
τ

γ β α τ τ τ α τ τ

γβ
 

Suppose [ ]
{ ( )}

i
d k  is uniformly bounded for each i V∈ , 

and 
2

0
( )

k
kα+∞

=
< +∞∑ , then we have 

[ ]2

0
ˆ( ) max || ( ) ( ) ||

i

i Vk
k x k x kα+∞

∈=
− < +∞∑ . 

4. Distributed Subgradient Methods 

In this section, we introduce a distributed penalty primal-

dual subgradient algorithm to solve the optimization problem 

(3), followed by its convergence properties. 

Distributed Penalty Primal-Dual Subgradient Algorithm 

We consider a set {1,..., }V n=  of agents. Each agent 

chooses any initial state 
[ ] [ ] [ ]

0 0(0) , (0) , (0)
i i im vX X R Rµ λ≥ ≥∈ ∈ ∈ , and 

[ ] [ ] [ ]
(1) ( (0))

i i i
y Nf X= . At any time 0k ≥ , each agent i  

computes the following convex combination: 

[ ] [ ] [ ] [ ]

( )

[ ] [ ] [ ] [ ]

( )

[ ] [ ] [ ] [ ]

( )

[ ] [ ] [ ] [ ]

( )

( ) ( ) ( )( ( ) ( ))

( ) ( ) ( )( ( ) ( ))

( ) ( ) ( )( ( ) ( ))

( ) ( ) ( )( ( ) ( ))

i

i

i

i

i i j i

x ijj N k

i i j i

u ijj N k

i i j i

ijj N k

i i j i

y ijj N k

v k x k h a k x k x k

v k k h a k k k

v k k h a k k k

v k y k h a k y k y k

λ

µ µ µ

λ λ λ

∈

∈

∈

∈

= + −

= + −

= + −

= + −

∑

∑

∑

∑

 

and updates its estimates [ ] [ ] [ ]
( 1), ( 1), ( 1)

i i i
x k k kµ λ+ + + , and 

[ ]
( 1)

i
y k +  according to the following ways: 

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

( 1) [ ( ) ( ) ( )]

( 1) ( ) ( )[ ( ( ))]

( 1) ( ) ( ) | ( ( )) |

( 1) ( ) ( ( ( )) ( ( 1)))

i i i

X x x

i i i

x

i i i

x

i i i i i i

y

x k P v k k S k

k v k k g v k

k v k k h v k

y k v k N f x k f x k

µ

λ

α

µ α

λ α

+

+ = −

+ = +

+ = +

+ = + − −

   (14) 

where the scalars 1 2( ), ( ),..., ( )i i ina k a k a k  are nonnegative 

weights and the positive scalars { ( )}kα  are step-sizes, XP  is 

the projector onto the set X . The vector [ ]
( )

i

xS k  is a 

subgradient of the agent i  ‘s penalty function [ ]

[ ]

( )
( )i

i

w k
H x  at 

[ ]
( )

i

xx v k= , where 
[ ] [ ] [ ]( ) ( ( ), ( ))i i iw k v k v kµ λ=  is the convex 

combination of dual estimates of agent i  and its neighbors’. 
[ ]

( )
i

xS k  keeps to the following rules: 

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ]

1

1

( ) ( ( )) ( ) [( ( ))]

( ) | | ( ( ))

+
=

=

= +

+

∑

∑

ℓ ℓℓ

ℓ ℓℓ

mi i i ii

x x x

v i i

x

S k Df v k v k Dg v k

v k D h v k

µ

λ

 

Remark 4.1: Since 
[ ] [ ] [ ] [ ]

( )
( ) ( ) ( )( ( ) ( ))

i

i i j i

x ijj N k
v k x k h a k x k x k

∈
= + −∑ , it follows 

that 

[ ] [ ] [ ]

1
( ) ( ) ( ) ( )

Ni i j

x ijj
v k x k h l k x k

=
= − ∑  

where ( ) [ ( )]ijL k l k=  is the Laplacian matrix such that 

T T
1 0 ,1 0N N N NL L= = .  

Proof: Modifying the second term on the right-hand side in 

the above formula, we then have 

[ ] [ ] [ ] [ ]

1,

[ ] [ ]

1,

( ) ( ) ( ) ( ) ( ) ( )

(1 ( )) ( ) ( ) ( )

Ni i i j

x ii ijj j i

Ni j

ii ijj j i

v k x k hl k x k h l k x k

hl k x k h l k x k

= ≠

= ≠

= − −

= − −

∑

∑
 

Let ( ) (1 ( )), ( ) ( )ii ii ij ijw k hl k w k hl k= − = − , one has 

[ ] [ ]

1
( ) ( ) ( )

Ni j

x ijj
v k w k x k

=
= ∑  

Since graph ( )G k  is balanced, then 
1

( ) 0
N

ijj
a k

=
=∑  and 

1
( ) 0

N

iji
a k

=
=∑ . We can conclude that 

1
( ) 1

N

ijj
w k

=
=∑  and 

1
( ) 1

N

iji
w k

=
=∑  hold under the condition that h  satisfies 

1 ( ) 0iihl k− > . Similarly, we obtain 
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[ ] [ ]

1
( ) ( ) ( )

Ni j

ijj
v k w k kµ µ

=
=∑ , 

[ ] [ ]

1
( ) ( ) ( )

Ni j

ijj
v k w k kλ λ

=
=∑  and 

[ ] [ ]

1
( ) ( ) ( )

Ni j

y ijj
v k w k y k

=
=∑ . 

Assumption 4.1 (Step-size assumption): The step-sizes 

satisfy lim ( ) 0
k

kα
→+∞

= , 
0

( )
k

kα+∞

=
= +∞∑ , 

2

0
( )

k
kα+∞

=
< +∞∑  

and lim ( 1) ( ) 0
k

k s kα
→+∞

+ = , 
2

0
( ) ( )

k
k s kα+∞

=
< +∞∑ , 

2 2

0
( 1) ( )

k
k s kα+∞

=
+ < +∞∑ . 

In the following, we study the convergence behavior of the 

subgradient algorithm introduced in this section where the 

optimal solution and the optimal value is asymptotically 

agreed upon. 

Theorem 4.1 (Convergence properties of the DPPDS 

algorithm): Consider the problem (3). Let the non-

degeneracy Assumption 3.3, the weight-balanced Assumption 

3.4 and the periodic strong connectivity Assumption 3.5 

hold. Consider the sequences of [ ]
{ ( )}

i
x k  and [ ]

{ ( )}
i

y k  of 

the distributed penalty primal-dual subgradient algorithm, 

where the step-sizes { ( )}kα  satisfy the step-size Assumption 

4.1. Then there exists a primal optimal solution *x X∈ɶ  such 

that 
[ ]

lim || ( ) || 0
i

k
x k x

→+∞
− =ɶ  for all i V∈ . Furthermore, we 

have 
[ ] *

lim || ( ) || 0
i

k
y k f

→+∞
− =  for all i V∈ . 

Remark 4.2: The distributed penalty primal-dual 

subgradient algorithm takes the equality constraint into 

account. The presence of the equality constrain can make 
*M  unbounded. Therefore, unlike other subgradient 

algorithm, e.g., [15], [16], the distributed penalty primal-dual 

subgradient algorithm does not involve the dual projection 

steps onto compact sets. So we do not guarantee the 

subgradient [ ]
( )

i

xS k  not to be absolutely bounded, while the 

boundedness of subgradients is a standard assumption in the 

analysis of subgradient methods, e.g., see [6], [13], [17], 

[18], [19], [20]. The step-size of Assumption 3.1 is stronger 

than the more standard diminishing step-size scheme in [22] 

and this will correctly deal with the difficulty of the 

boundedness of [ ]
( )

i

xS k . We give this condition in order to 

prove, in the absence of the boundedness of [ ]
( )

i

xS k , the 

existence of a number of limits and summability of 

expansion toward Theorem 4.1. Finally, we adopt the penalty 

relaxation instead of the Lagrangian relaxation in this paper. 

Remark 4.3 (Penalty subgradient inequality): Observe that 
[ ] [ ]

( ) 0, ( ) 0
i i

k kµ λ≥ ≥  and [ ]
( )

i

xv k X∈  (due to the fact that 

X is convex and 
[ ] [ ]

1
( ) ( ) ( )

Ni i

x ijj
v k w k x k

=
=∑ ). Moreover, 

[ ] [ ]
( [( ( ))] ,| ( ( )) |)

i i

x xg v k h v k+  is a supgradient of 

[ ]
[ ] [ ]

( )
( ( ))i

i i

w k
H w k ; i.e. the following penalty supgradient 

inequality holds for any 0

m
Rµ ≥∈  and 0

v
Rλ ≥∈ : 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

( [( ( ))] ) ( ( )) | ( ( )) | ( ( ))

( ( ), , ) ( ( ), ( ), ( ))

i i i i

x x

i i i i i i

x x

g v k v k h v k v k

H v k H v k v k v k

µ λ

µ λ

µ λ

µ λ

+ Τ Τ− + −

≥ −
  (15) 

Proof: Observe that 
[ ] [ ]

( , , ) ( ) [ ( )] | ( ) |
i i

H x f x g x h xµ λ µ λΤ + Τ= + +  holds for all 

[ ]
( ) 0

i
kµ ≥ , [ ]

( ) 0
i

kλ ≥ , [ ]
( )

i

xv k X∈  and i  is arbitrarily. 

Thus, 

[ ] [ ] [ ] [ ] [ ] [ ]
( ( ), , ) ( ( )) [ ( ( ))] | ( ( )) |

i i i i i i

x x x xH v k f v k g v k h v kµ λ µ λΤ + Τ= + +
 

and  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

( ( ), ( ), ( )) ( ( )) ( ( )) [ ( ( ))]

( ( )) | ( ( )) |

Τ +

Τ

= +

+

i i i i i i i i

x x x

i i

x

H v k v k v k f v k v k g v k

v k h v k

µ λ µ

λ

 

Followed by the properties of supgradient, we obtain 

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]( ) [ ]

[ ] [ ] [ ] [ ]

( ( ), , ) ( ( ), ( ), ( ))

( ( )) [ ( ( ))] ( ) | ( ( )) |

( [( ( ))] ) ( ( )) | ( ( )) | ( ( ))

i i i i i i

x x

i i i i

x x

i i i i

x x

H v k H v k v k v k

v k g v k v k h v k

g v k v k h v k v k

µ λ

µ λ

µ λ

µ λ

µ λ

µ λ

Τ
Τ +

+ Τ Τ

−

≤ − + −

≤ − + −

 

Remark 4.4: In this paper, we apply the harmonic series 

0

1
( )

1 k Z

k
k

α
∈ ≥

 = + 
 into our subgradient algorithm. It’s easy 

to check that 
0

1
( )

1 k Z

k
k

α
∈ ≥

 = + 
 satisfies the step-size 

Assumption 4.1 (for more details, one may refer to [14]). 

A. Convergence Analysis  
In the following, we will prove convergence of the 

distributed penalty primal-dual subgradient algorithm. First, 

we rewrite our algorithm into the following form: 

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

( 1) ( ) ( ), ( 1) ( ) ( )

( 1) ( ) ( ), ( 1) ( ) ( )

i i i i i i

i i i i i i

x x y y

k v k u k k v k u k

x k v k e k y k v k u k

µ µ µ µµ λ+ = + + = +

+ = + + = +
 

where [ ]
( )

i

xe k  is projection error described by  

[ ] [ ] [ ] [ ]
( ) [ ( ) ( ) ( )] ( )

i i i i

x X x x xe k P v k k S k v kα= − −  

and 
[ ] [ ]

( ) ( )[ ( ( ))]
i i

xu k k g v kµ α += , [ ] [ ]
( ) ( ) | ( ( )) |

i i

xu k k h v kλ α= , 

[ ] [ ] [ ] [ ] [ ]
( ) ( ( ( )) ( ( 1)))

i i i i i

yu k N f x k f x k= − −  are some local 

inputs. Denote the maximum deviations of dual estimates by 
[ ]

( ) max || ( ) ||
i

i VM k kµ µ∈=  and [ ]
( ) max || ( ) ||

i

i VM k kλ λ∈= . 

We further denote the averages of primal and dual estimates 

as 
[ ] [ ]

1 1

1 1
( ) ( ), ( ) ( )

N Ni i

i i
x k x k k k

N N
µ µ

= =
= =∑ ∑  and 

[ ]
1

1
( ) ( )

N i

i
k k

N
λ λ

=
= ∑ . Since X  is compact, and [ ] [ ], ( )

i
f g

+⋅  

and h  are continuous, there exist , , 0F G H
+ >  such that for 

all x X∈ , it holds that [ ]
|| ( ) ||

i
f x F≤  for all i V∈ , 

[ ]|| ( ) ||g x G
+ +≤  and || ( ) ||h x H≤ . Since X  is a compact set 
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and [ ]i
f , [ ]( )g x

+
, | ( ) |h ⋅

ℓ  are convex, then it follows from 

Proposition 5.4.2 in [19] that there exist , , 0F HG
D D D+ >  

such that for all x X∈ , we have that 

[ ]
|| ( ) || ( )

i

FDf x D i V≤ ∈ , [ ]|| ( ) || (1 )
G

m D g x D m+

+ ≤ ≤ ≤
ℓ

ℓ  

and || | | ( ) || (1 )HD h x D v≤ ≤ ≤
ℓ

ℓ . 

Lemma 4.1: Let 0K ≥ . Consider the sequence { ( )}kδ  

defined by { ( )}kδ =  

1

1

( ) ( )

( )

k

k

k

k

α ρ

α

−

=
−

=

∑
∑
ℓ

ℓ

ℓ ℓ

ℓ
, where 1k K≥ + , 

( ) 0kα >  and ( )
k K

kα+∞

=
= +∞∑ . 

(a) If lim ( )
k

kρ
→+∞

= +∞ , then lim ( )
k

kδ
→+∞

= +∞ . 

(b) If 
*lim ( )

k
kρ ρ

→+∞
= , then 

*lim ( )
k

kδ ρ
→+∞

= . 

The proof of Lemma 4.1 can be referred to Lemma 5.1 in 

[14]. 

Lemma 4.2 (Diminishing and summable properties): 

Suppose the weighted-balanced Assumption 3.4 and the step-

size Assumption 4.1 hold. 

(a) It holds that 
[ ]

lim ( ) ( ) 0, lim ( ) ( ) 0, lim ( ) || ( ) || 0
i

x
k k k

k M k k M k k S kµ λα α α
→+∞ →+∞ →+∞

= = =

, and the sequences of 
2 2{ ( ) ( ) }k M kµα , 

2 2
{ ( ) ( ) }k M kλα  and 

[ ]2 2{ ( ) || ( ) || }
i

xk S kα  are summable. 

(b) The sequences of 
[ ]ˆ{ ( ) || ( ) ( ) ||}
i

k k v kµα µ − , 

[ ]ˆ{ ( ) || ( ) ( ) ||}
i

k k v kλα λ − , { ( ) ( )k M kµα [ ]ˆ|| ( ) ( ) ||}
i

xx k v k− , 

[ ]ˆ{ ( ) ( ) || ( ) ( ) ||}
i

xk M k x k v kλα −  and [ ]ˆ{ ( ) || ( ) ( ) ||}
i

xk x k v kα −  

are summable. 

Proof: (a) Noticing that 

[ ] [ ] [ ]

1 1 1
( ) max || ( ) ||, ( ) ( ) ( ) , ( ) 1, ( ) 1

N N Ni i j

i V ij ij ijj j i
M k k v k w k k w k w kµ µµ µ∈ = = =

= = = =∑ ∑ ∑  

Then, we show that 

[ ] [ ] [ ]
1 1 1

|| ( ) || || ( ) ( ) || ( ) || ( ) || ( ) ( ) ( )
N N Ni j j

ij ij ijj j j
v k w k k w k k w k M k M kµ µ µµ µ

= = =
= ≤ ≤ =∑ ∑ ∑  

Recalling that [ ]
( )

i

xv k X∈ ,
[ ] [ ] [ ]

( 1) ( ) ( )[ ( ( ))]
i i i

xk v k k g v kµµ α ++ = + . This implies that the following inequalities hold for all 

0k ≥ : 

[ ] [ ] [ ] [ ]
|| ( 1) || || ( ) ( )[ ( ( ))] || || ( ) || ( ) ( ) ( )

i i i i

xk v k k g v k v k G k M k G kµ µ µµ α α α+ + ++ = + ≤ + ≤ +  

Then we deduce the following recursive estimate on ( 1) ( ) ( )M k M k G kµ µ α++ ≤ + . Repeatedly applying the above 

estimates yields that 

( 1) (0) ( )M k M G s kµ µ
++ ≤ +                                                                          (16) 

where ( ) (0) (1) ( )s k kα α α= + +⋯ . 

Similar arguments can be employed to show that 

( 1) (0) ( )M k M Hs kλ λ+ ≤ +                                                                             (17) 

Since lim ( 1) ( ) 0
k

k s kα
→+∞

+ =  and lim ( ) 0
k

kα
→+∞

= , then we know that lim ( 1) ( 1) 0
k

k M kµα
→+∞

+ + =  and 

lim ( 1) ( 1) 0
k

k M kλα
→+∞

+ + = . Noticing that 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]
1 1

1 1

|| ( ) || || ( ( )) ( ) [( ( ))] ( ) | | ( ( )) ||

|| ( ( )) || || ( ) [( ( ))] || || ( ) | | ( ( )) ||

m vi i i i i i i

x x x xl

m vi i i i i i

x x xl

S k Df v k v k Dg v k v k D h v k

Df v k v k Dg v k v k D h v k

µ λ

µ λ

+
= =

+
= =

= + +

≤ + +

∑ ∑

∑ ∑

ℓ ℓ ℓ ℓℓ

ℓ ℓ ℓ ℓℓ

 

Then, the following estimate on [ ]
( )

i

xS k  holds: 

[ ]|| ( ) || ( ) ( )
i

x F HG
S k D D M k D M kµ λ+≤ + +                                                                (18) 

Recalling that lim ( ) 0
k

kα
→+∞

= , lim ( ) ( ) 0
k

k M kµα
→+∞

=  and lim ( ) ( ) 0
k

k M kλα
→+∞

= . Then we have 
[ ]

lim ( ) || ( ) || 0
i

x
k

k S kα
→+∞

= . By 

(16), we obtain 

2 2 2 2 2 2

0 1
( ) ( ) (0) (0) ( ) ( (0) ( 1))

k k
k M k M k M G s kµ µ µα α α+∞ +∞ +

= =
≤ + + −∑ ∑  
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It follows from the step-size Assumption 4.1 that 
2 2

0
( ) ( )

k
k M kµα+∞

=
< +∞∑ . Similarly, one can show that 

2 2

0
( ) ( )

k
k M kλα+∞

=
< +∞∑ . Multiplying both sides of ( 1) ( ) ( )M k M k G kµ µ α++ ≤ +  by ( )kα  and square, then we deduce the 

following recursive estimate: 

[ ]2 2 2 2

0

2 2

1

( ) || ( ) || (0) ( (0) (0))

( ) ( ( (0) ( 1)) ( (0) ( 1)))

i

x F G Hk

F G Hk

k S k D D M D M

k D D M G s k D M Hs k

µ λ

µ λ

α α

α

+∞

=

+∞ +
=

≤ + + +

+ + + + − + + −

∑

∑
 

Then the summability of 
2

{ ( ) }kα , 
2

{ ( 1) ( )}k s kα +  and 
2 2

{ ( 1) ( ) }k s kα +  testifies that of [ ]2 2{ ( ) || ( ) || }
i

xk S kα . 

(b) Noticing that 

[ ] [ ] [ ]
1

ˆ ˆ ˆ|| ( ) ( ) || ( ) || ( ) ( ) || max || ( ) ( ) ||
Ni j i

ijj i V
k v k w k k k k kµµ µ µ µ µ

= ∈
− ≤ − ≤ −∑                                    (19) 

Then following from Lemma 3.4 with 0

m
Z R≥=  and [ ] [ ]

( ) [ ( ( ))]
i i

xd k g v k += − , we have the summability of 

[ ]ˆ{ ( ) max || ( ) ( ) ||}
i

i Vk k kα µ µ∈ − . Then 
[ ]ˆ{ ( ) || ( ) ( ) ||}
i

k k v kµα µ −  is summable. Similarly, it holds that 

[ ]
0

ˆ( ) || ( ) ( ) ||
i

k
k k v kλα λ+∞

=
− < +∞∑ . 

We now consider the evolution of [ ]
( )

i
x k . Recalling that [ ]

( )
i

xv k X∈ . By Lemma 2.1, let Z X= , [ ] [ ]
( ) ( ) ( )

i i

x xz v k k S kα= −  

and [ ]
( )

i

xy v k= , we get 

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

2 2

2

|| ( 1) ( ) || || ( ) ( ) ( ) ( ) ||

|| ( 1) ( ( ) ( ) ( )) ||

i i i i i

x x x x

i i i

x x

x k v k v k k S k v k

x k v k k S k

α

α

+ − ≤ − −

− + − −
 

Regrouping the above estimates, we obtain 

[ ] [ ] [ ]
|| ( ) ( ) ( ) || ( ) || ( ) ||

i i i

x x xe k k S k k S kα α+ ≤  

With the above relation, from Lemma 3.4 with Z X=  and [ ] [ ]
( ) ( )

i i

xd k S k= , the following holds for some 0γ >  and 

0 1β< < : 

[ ] [ ] [ ]11

0 0
ˆ|| ( ) ( ) || || (0) || 2 ( ) || ( ) ||

N ki i ik k

xi
x k x k N x N Sτ

τ
γβ γ β α τ τ−− −

= =
− ≤ +∑ ∑                                   (20) 

Multiplying both side of (20) by ( ) ( )k M kµα  and using (18), for all i V∈ , it yields 

[ ] [ ] 1

0

1

0

ˆ( ) ( ) || ( ) ( ) || || (0) || ( ) ( )

2 ( ) ( ) ( )( ( ) ( ))

Ni i k

i

k k

F G H

k M k x k x k N x k M k

N k M k D D M D M

µ µ

τ
µ µ λτ

α γ α β

γα β α τ τ τ

−
=

− −
=

− ≤

+ + + +

∑

∑
 

By applying the relation of 2 21
( )

2
ab a b≤ +  and sorting out, we get 

[ ] [ ]

[ ]

1

0 0

2 2 2( 1)

0

1 2 2 2

0

1
ˆ( ) ( ) max || ( ) ( ) || ( || (0) || ( ) )

2

1
( ) ( ) || (0) ||

2

( ) ( ( ) ( ))

N ki i k

F HGii V

N i k

i

k k

F HG

k M k x k x k N x D D D

k M k N x

N D D M D M

τ
µ τ

µ

τ
µ λτ

α γ β

α γ β

γ β α τ τ τ

+

+

− −
= =∈

−
=

− −
=

− ≤ + + +

× +

+ + +

∑ ∑

∑

∑

 

Part (a) gives that 
2 2{ ( ) ( ) }k M kµα  is summable. Meanwhile, 

[ ]
0
|| (0) ||, , ,

N i

F HGi
x D D D+=∑  are bounded, and 

1

0 0

1

1

k k k

k

τ
τ

β β
β

− +∞−
= =

≤ =
−∑ ∑ , then we can say that the first term on the right-hand side in the above estimate is summable. 
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Recalling that [ ]

[ ]

2( 1) 0

0

|| (0) ||

|| (0) ||
1

N
i

N
i k i

i

N x

N x

γ
γ β

β
− =

=

≤
−

∑
∑

, it’s easy to check that the second term is also summable. Part (a) 

gives that 
2 2 2

lim ( ) (( ( ) ( ))) 0F HGk
k D D M k D M kµ λα +

→+∞
+ + =  and 

2 2 2
{ ( ) (( ( ) ( )))}F HG

k D D M k D M k
µ λ

α ++ +  is summable. Then 

according to the Lemma 7 in [13] with 
2 2 2( ) ( ( ) ( )) 0F HG

N D D M D M
µ λ

γ γα += + + =
ℓ

ℓ ℓ ℓ , ensure that the third term is 

summable. In summary, 
[ ] ˆ{ ( ) ( ) max || ( ) ( ) ||}
i

i V
k M k x k x kµα

∈
−  is summable. Following the same lines in (19), one can show the 

summability of 
[ ] ˆ{ ( ) ( ) || ( ) ( ) ||}
i

xk M k v k x kµα − . Similarly, [ ] ˆ{ ( ) ( ) || ( ) ( ) ||}
i

xk M k v k x kλα −  and [ ] ˆ{ ( ) || ( ) ( ) ||}
i

xk v k x kα −  are 

summable. 

Lemma 4.3 (Basic iteration relation): The following estimates hold for any x X∈  and 0 0( , )
m

R R
νµ λ ≥ ≥∈ × : 

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

2 2 2 2 2

1 1 1

1

|| ( ) ( ) ( ) || ( ) || ( ) || (|| ( ) || || ( 1) || )

2 ( )( ( ( ), ( ), ( )) ( , ( ), ( )))

N N Ni i i i i

x x xi i i

N i i i i i i i

xi

e k k S k k S k x k x x k x

k H v k v k v k H x v k v kµ λ µ λ

α α

α
= = =

=

+ ≤ + − − + −

− −

∑ ∑ ∑

∑                (21) 

and 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

2 2 2 2

1 1

1

2 2 2

1

0 (|| ( ) || || ( 1) || ) (|| ( ) || || ( 1) || )

2 ( )( ( ( ), ( ), ( )) ( ( ), , ))

( ) (|| [ ( ( ))] || || ( ( )) ||)

N Ni i i i

i i

N i i i i i i

x xi

N i i

x xi

k k k k

k H v k v k v k H v k

k g v k h v k

µ λ

µ µ µ µ λ λ λ λ

α µ λ

α

= =

=

+
=

≤ − − + − + − − + −

+ −

+ +

∑ ∑

∑

∑

                    (22) 

Proof: By Lemma 2.1, we can deduce that 
2 2 2

|| [ ] || || || || [ ] ||Z ZP z z z y P z y− ≤ − − − . Let 

[ ] [ ]
, ( ) ( ) ( ),

i i

x xZ X z v k k S k y x Xα= = − = ∈ , we have 

[ ] [ ] [ ] [ ] [ ]2 2 2

1 1 1
|| ( ) ( ) ( ) || || ( ) ( ) ( ) || || ( 1) ||

N N Ni i i i i

x x x xi i i
e k k S k v k k S k x x k xα α

= = =
+ ≤ − − − + −∑ ∑ ∑  

Expanding and regrouping the above formula, we obtain 

[ ] [ ] [ ] [ ] [ ]2 2 2

1 1 1

[ ] 2 [ ] 2

1 1

|| ( ) ( ) ( ) || ( ) || ( ) || 2 ( ) ( ) ( ( ) )

|| ( ) || || ( 1) ||

N N Ni i i i i

x x x x xi i i

N Ni i

i i

e k k S k k S k k S k v k x

x k x x k x

α α α Τ
= = =

= =

+ ≤ − −

+ − − + −

∑ ∑ ∑

∑ ∑
 

Owing to the subgradient inequality 
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

( ) ( ( ) ) ( ( ), ( ), ( )) ( , ( ), ( ))
i i i i i i i i i

x x xS k v k x H v k v k v k H x v k v kµ λ µ λ
Τ − ≤ − , 

it follows that: 

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

2 2 2 2 2

1 1 1

1

|| ( ) ( ) ( ) || ( ) || ( ) || (|| ( ) || || ( 1) || )

2 ( )( ( ( ), ( ), ( )) ( , ( ), ( )))

N N Ni i i i i

x x xi i i

N i i i i i i i

xi

e k k S k k S k x k x x k x

k H v k v k v k H x v k v kµ λ µ λ

α α

α
= = =

=

+ ≤ + − − + −

− −

∑ ∑ ∑

∑
 

Lemma 4.4 (Achieving consensus): Let assumption 3.3-3.5 holds. Consider the sequences of [ ] [ ] [ ]
{ ( )},{ ( )},{ ( )}

i i i
x k k kλ µ  

and [ ]
{ ( )}

i
y k  of the distributed penalty primal-dual subgradient algorithm with the step-size sequence { ( )}kα  and the 

associated { ( )}s k  satisfy lim ( ) 0
k

kα
→+∞

= , lim ( 1) ( ) 0
k

k s kα
→+∞

+ = . Then there exists x X∈ɶ  such that 
[ ]

lim || ( ) || 0
i

k
x k x

→+∞
− =ɶ  for all 

i V∈ . Furthermore, 
[ ] [ ]

lim || ( ) ( ) || 0
i j

k
k kµ µ

→+∞
− = , 

[ ] [ ]
lim || ( ) ( ) || 0

i j

k
k kλ λ

→+∞
− = and 

[ ] [ ]
lim || ( ) ( ) || 0

i j

k
y k y k

→+∞
− =  for all ,i j V∈ . 

Proof: By Lemma 4.3, we see that 

[ ] [ ] [ ] [ ] [ ]2 2 2

1 1 1

[ ] 2 [ ] 2

1 1

|| ( ) ( ) ( ) || ( ) || ( ) || 2 ( ) ( ) ( ( ) )

|| ( ) || || ( 1) ||

N N Ni i i i i

x x x x xi i i

N Ni i

i i

e k k S k k S k k S k v k x

x k x x k x

α α α Τ
= = =

= =

+ ≤ − −

+ − − + −

∑ ∑ ∑

∑ ∑
 

Owing to 
[ ] [ ] 2

1
0 || ( ) ( ) ( ) ||

N i i

x xi
e k k S kα

=
≤ +∑ , one can show that 

[ ] [ ] [ ][ ] 2 2 2 [ ] 2

1 1 1 1
|| ( 1) || ( ) || ( ) || 2 ( ) || ( ) |||| ( ( ) ) || || ( ) ||

N N N Ni i ii i

x x xi i i i
x k x k S k k S k v k x x k xα α

= = = =
+ − ≤ + − + −∑ ∑ ∑ ∑  
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Since 
[ ]

lim ( ) || ( ) || 0
i

x
k

k S kα
→+∞

= , taking the limit on k  in the above inequality, then it follows that x X∀ ∈ : 

[ ] 2 [ ] 2

1 1
lim sup || ( 1) || lim inf || ( ) ||

N Ni i

i ik k
x k x x k x

= =→+∞ →+∞
+ − ≤ −∑ ∑  

and thus 
[ ] 2

1
lim || ( ) ||

N i

ik
x k x

=→+∞
−∑  exists for any x X∈ :  

[ ] [ ] [ ] [ ] [ ]{
[ ] [ ] [ ] [ ] [ ] [ ] [ ] }

2 2 2 2 2

1 1 1

1

lim || ( ) ( ) ( ) || lim ( ) || ( ) || {|| ( ) || || ( 1) || }

2 ( )( ( ( ), ( ), ( )) ( , ( ), ( )))

N N Ni i i i i

x x xi i ik k

N i i i i i i i

xi

e k k S k k S k x k x x k x

k H v k v k v k H x v k v kµ λ µ λ

α α

α

= = =→+∞ →+∞

=

+ ≤ + − − + −

− −

∑ ∑ ∑

∑
 

On the other hand, taking limits on both sides of the above inequality, we have 
[ ] [ ] 2

1
lim || ( ) ( ) ( ) || 0

N i i

x xik
e k k D kα

=→+∞
+ =∑  and 

therefore we deduce that 
[ ]

lim || ( ) || 0
i

x
k

e k
→+∞

=  for all i V∈ . It follows from Lemma 4.1 that 
[ ] [ ]

lim || ( ) ( ) || 0
i j

k
x k x k

→+∞
− =  for all 

,i j V∈ . Combining this with the property, we can deduce that 
[ ]

lim || ( ) || 0
i

k
x k x

→+∞
− =ɶ  for all i V∈ .  

Since 
[ ]

lim ( )
i

k
x k x

→+∞
= ɶ , [ ]i

f  is continuous, for 
[ ] [ ] [ ] [ ] [ ]

( ) ( ( ( )) ( ( 1)))
i i i i i

yu k N f x k f x k= − − , 
[ ] [ ]

( ) ( )[ ( ( ))]
i i

xu k k g v kµ α +=  and 

[ ] [ ]
( ) ( ) | ( ( )) |

i i

xu k k h v kλ α= , we can deduce that 
[ ]

lim ( ) 0
i

y
k

u k
→+∞

= , 
[ ]

lim ( ) 0
i

k
u kµ→+∞

= , 
[ ]

lim ( ) 0
i

k
u kλ→+∞

= . 

Claim 1: For any * *x X∈  and 
* * *

( , ) Mµ λ ∈ , the sequences of 
1

{ ( )[
N

i
kα

=∑ [ ] [ ] [ ]* * ˆˆ( , ( ), ( )) ( , ( ), ( ))]}
i i i

H x v k v k H x k kµ λ µ λ−  

and 
[ ] [ ] * * * *

1
ˆ{ ( )[ ( ( ), , ) ( ( ), , ]}

N i i

xi
k H v k H x kα µ λ µ λ

=
−∑ are summable 

Proof: Observing that 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

* *

* * * * * *

* *

ˆˆ( , ( ), ( )) ( , ( ), ( ))

ˆˆ( ) ( ( )) [ ( )] ( ( )) | ( ) | ( ) ( ( )) [ ( )] ( ( )) | ( ) |

ˆˆ(( ( )) ( ( )) )[ ( )] (( ( )) ( ( )) ) | ( ) |

i i i

i i i i

i i

H x v k v k H x k k

f x v k g x v k h x f x k g x k h x

v k k g x v k k h x

µ λ

µ λ

µ λ

µ λ

µ λ

µ λ

Τ + Τ Τ + Τ

Τ Τ + Τ Τ

−

= + + − + +

= − + −

 

Recalling that [ ] [ ]|| ( ) || ,|| ( ) || ,|| ( ) ||
i

f x F g x G h x H
+ +≤ ≤ ≤ , we then have 

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

* *

* *

* *

ˆˆ|| ( , ( ), ( )) ( , ( ), ( )) ||

ˆˆ|| (( ( )) ( ( )) )[ ( )] || || (( ( )) ( ( )) ) ( ) ||

ˆˆ|| ( ) ( ) |||| ( ) || || ( ) ( ) |||| ( ) ||

ˆˆ|| ( ) ( ) || || ( ) ( ) ||

i i i

i i

i i

i i

H x v k v k H x k k

v k k g x v k k h x

v k k g x v k k h x

G v k k H v k k

µ λ

µ λ

µ λ

µ λ

µ λ

µ λ

µ λ

µ λ

Τ Τ + Τ Τ

+

+

−

≤ − + −

≤ − + −

≤ − + −

 

By using the summability of 
[ ]ˆ{ ( ) || ( ) ( ) ||}
i

k k v kµα µ −  and [ ]ˆ{ ( ) || ( ) ( ) ||}
i

k k v kλα λ −  in part (b) of Lemma 4.2, we have that 

[ ] [ ] [ ] [ ]* *

1

ˆˆ{ ( ) || ( , ( ), ( )) ( , ( ), ( )) ||}
N i i i i

i
k H x v k v k H x k kµ λα µ λ

=
−∑  are summable. Similarly, the following estimates hold: 

[ ] [ ]

[ ] [ ] [ ] [ ] [ ]

* * * *

* * * *

ˆ( ( ), , ) ( ( ), , )

ˆ ˆ ˆ( ( )) ( ) [ ( ( ))] ( ) | ( ( )) | ( ( ) ( ) [ ( ( )] ( ) | ( ( ) |

i i

x

i i i i i

x x x

H v k H x k

f v k g v k h v k f x k g x k h x k

µ λ µ λ

µ λ µ λΤ + Τ Τ + Τ

−

= + + − + +
 

Due to [ ]
|| ( ) || ( )

i

F
Df x D i V≤ ∈ , [ ]|| ( ) || (1 )

G
m D g x D m+

+ ≤ ≤ ≤
ℓ

ℓ  and || ( ) || Hv D h x D≤
ℓ

(1 )v≤ ≤ℓ  holds for all x X∈ , the 

following estimates hold: 

[ ] [ ] [ ] [ ] [ ]

[ ]

[ ]

[ ]

* * * *

*

*

* *

ˆ ˆ|| ( ( ), , ) ( ( ), , ) || || ( ( )) ( ( )) ||

ˆ|| ( ) ([ ( ( ))] [ ( ( )] ) ||

ˆ|| ( ) (| ( ( )) | | ( ( )) |) ||

ˆ( || || || ||) || ( ) ( ) ||

i i i i i

x x

i

x

i

x

i

F H xG

H v k H x k f v k f x k

g v k g x k

h v k h x k

D D D v k x k

µ λ µ λ

µ

λ

µ λ+

Τ + +

Τ

− ≤ −

+ −

+ −

≤ + + −
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Then the property of 
[ ]

0
ˆ( ) || ( ) ( ) ||

i

xk
k x k v kα+∞

=
− < +∞∑  in part (b) in Lemma 4.2 implies the summability of the sequence 

[ ] [ ] [ ] [ ]* *

1

ˆˆ{ ( ) || ( , ( ), ( )) ( , ( ), ( )) ||}
N i i i i

i
k H x v k v k H x k kµ λα µ λ

=
−∑  and that of  

[ ] [ ] [ ] [ ]* *

1

ˆˆ{ ( )[ ( ( , ( ), ( )) ( , ( ), ( )))]}
N i i i i

i
k H x v k v k H x k kµ λα µ λ

=
−∑ . 

Claim 2: Denote the weighted version of the local penalty function [ ]i
H  over [0, 1]k −  as 

[ ] [ ] [ ] [ ]1

0

1ˆ ( ) ( ) ( ( ), ( ), ( ))
( 1)

ki i i i

x
H k H v v v

s k
µ λα−

=
=

− ∑ℓ
ℓ ℓ ℓ ℓ . The following property holds: 

[ ] *

1

ˆlim ( )
N i

ik
H k f

=→+∞
=∑ . 

Proof: Summing (21) over [0, 1]k −  and replacing x  by * *x X∈ , we can deduce that 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

1 *

0 1

1* 2 2

1 0 1

( ) ( ( ( ), ( ), ( )) ( , ( ), ( )))

|| (0) || ( ) || ( ) ||

k N i i i i i i i

xi

N k ni i

xi i

H v v v H x v v

x x S

µ λ µ λα

α

−

= =

−

= = =

−

≤ − +

∑ ∑

∑ ∑ ∑
ℓ

ℓ

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ
                                 (23) 

The summability of [ ]2 2{ ( ) || ( ) || }
i

xk S kα  in Part (b) implies that the right-hand side of (21) is finite as k → +∞ , and thus 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]1 *

0 1

1
lim sup ( )[ ( ( ( ), ( ), ( )) ( , ( ), ( )))] 0

( 1)

k N i i i i i i i

xik
H v v v H x v v

s k
µ λ µ λα−

= =→+∞
− ≤

− ∑ ∑ℓ
ℓ ℓ ℓ ℓ ℓ ℓ                     (24) 

On the other hand, 
* * *

( , , )x µ λ  is a saddle point of H  over 0 0

m v
X R R≥ ≥× × . Since ˆˆ( ( ), ( ))k kµ λ 0 0

m v
R R≥ ≥∈ × , then we have 

* * * * *ˆˆ( , ( ), ( )) ( , , )H x k k H x fµ λ µ λ≤ = . Claim 1 and (24) renders that 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

1 *

0 1

1 *

0 1

1 *

0

1
lim sup ( )[ ( ( ( ), ( ), ( )) ]

( 1)

1
lim sup ( )[ ( ( ( ), ( ), ( )) ( , ( ), ( )))]

( 1)

1
lim sup ( )[ ( , ( ), ( )) (

( 1)

k N i i i i

xik

k N i i i i i i i

xik

k i i i

k

H v v v f
s k

H v v v H x v v
s k

H x v v H x
s k

µ λ

µ λ µ λ

µ λ

α

α

α

−

= =→+∞

−

= =→+∞

−

=→+∞

−
−

≤ −
−

+ −
−

∑ ∑

∑ ∑

∑

ℓ

ℓ

ℓ

ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ
*

1

1 * *

0

ˆˆ, ( ), ( ))]

1 ˆˆlim sup ( ( , ( ), ( )) ) 0
( 1)

N

i

k

k
H x f

s k

µ λ

µ λ

=

−

=→+∞
+ − ≤

−

∑

∑ ℓ

ℓ ℓ

ℓ ℓ

 

and thus 
[ ] *

1

ˆlim sup ( )
N i

ik
H k f

=→+∞
≤∑ . On the other hand, ˆ( )x k X∈  (due to X  is convex) implies 

* * * * * *ˆ( ( ), , ) ( , , )H x k H x fµ λ µ λ≥ = . Similarly, we have the following estimates 
[ ] *

1

ˆlim inf ( )
N i

ik
H k p

=→+∞
≥∑ . Thus 

[ ] *

1

ˆlim ( )
N i

ik
H k f

=→+∞
=∑ . 

Claim 3: Denote 
[ ] [ ] [ ] [ ]

1

ˆˆ ˆ( ) (( ( ), ( ), ( )) ( ( ), ( ), ( ))
N i i i i

xi
k H v k v k v k H x k k kµ λπ µ λ

=
= −∑ . And we denote the weighted version of the 

global penalty function H  over [0, 1]k −  as 

1

0

1 ˆˆ ˆ ˆ( ) ( ) ( ( ), ( ), ( ))
( 1)

k
H k H x

s k
α µ λ−

=
=

− ∑ ℓ
ℓ ℓ ℓ ℓ  

The following property holds: 
*ˆlim ( )

k
H k f

→+∞
= . 

Proof: Noticing that 

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

[ ]

T T

1 1

T T

1

T T

1

T T

ˆ ˆ( ) ( ( ( )) ( ( ))) ( ( )) [ ( ( ))] ( ) [ ( ( ))] )

ˆ ˆ(( ( )) [ ( ( ))] ( ) [ ( ( ))] )

ˆ( ( ) | ( ( )) | ( ) | ( ( )) |)

ˆˆ ˆ( ( ) | ( ( )) | ( ) | (

N Ni i i i i i

x xi i

N i i

xi

N i i i

xi

i

k f v k f x k v k g v k v k g x k

v k g v k k g x k

v k h v k v k h x k

v k h x k k h

µ µ

µ

λ λ

λ

π

µ

λ

+ +
= =

+ +
=

=

= − + −

+ −

+ −

+ −

∑ ∑

∑

∑

1
( )) |)

N

i
x k

=∑

                   (25) 

By using the boundedness of subgradients and the primal estimates, we can see that 



 Applied and Computational Mathematics 2016; 5(5): 213-229 226 

 

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

[ ]

T T

1 1

T T

1

T T

1

ˆ ˆ|| ( ) || || ( ( ( )) ( ( ))) || || ( ( )) [ ( ( ))] ( ) [ ( ( ))] ) ||

ˆ ˆ|| (( ( )) [ ( ( ))] ( ) [ ( ( ))] ) ||

ˆ|| ( ( ) | ( ( )) | ( ) | ( ( )) |) ||

|| ( ( )

N Ni i i i i i

x xi i

N i i

xi

N i i i

xi

i

k f v k f x k v k g v k v k g x k

v k g v k k g x k

v k h v k v k h x k

v k

µ µ

µ

λ λ

λ

π

µ

+ +
= =

+ +
=

=

≤ − + −

+ −

+ −

+

∑ ∑

∑

∑
T T

1

ˆˆ ˆ| ( ( )) | ( ) | ( ( )) |) ||
N

i
h x k k h x kλ

=
−∑

 

Noticing that [ ]
|| ( ) || ( )

i

FDf x D i V≤ ∈ , [ ]|| ( ) || (1 )
G

m D g x D m+

+ ≤ ≤ ≤
ℓ

ℓ  and || | | ( ) || (1 )Hv D h x D v≤ ≤ ≤
ℓ

ℓ  holds for all 

x X∈ , the following estimates hold: 

[ ]

[ ] [ ]
1

1 1

ˆ|| ( ) || ( ( ) ( )) || ( ) ( ) ||

ˆˆ|| ( ) ( ) || || ( ) ( ) ||

N i

F G H xi

N Ni i

i i

k D D M k D M k v k x k

G v k k H v k k

µ λ

µ λ

π

µ λ
=

+
= =

≤ + + + × −

+ − + −

∑

∑ ∑
                                              (26) 

Then it follows from (b) in Lemma 4.2 that { ( ) || ( ) ||}k kα π  is summable. Notice that  

[ ]
1

0

1

( ) || ( ) ||
ˆ ˆlim || ( ) ( ) || lim 0

( 1)

k

N i

ik k
H k H k

s k

α π−

=
=→+∞ →+∞

− ≤ =
−

∑
∑ ℓ

ℓ ℓ
. Following the Claim 2, hence, 

*ˆlim ( )
k

H k f
→+∞

= . 

Claim 4: The limit point xɶ  in Lemma 4.4 is a primal optimal solution. 

Proof: Let 
T

1 0
ˆ ˆ ˆ( ) ( ( ), , ( ))

m

mk k k Rµ µ µ ≥= ∈⋯ . By 
[ ] [ ][ ]( 1) ( ) ( )
i ii

uk v k u kµµ + = +  and 
1 1

( ) 1, ( ) 1
N N

ij ijj i
w k w k

= =
= =∑ ∑ , we get 

[ ] [ ] [ ]

[ ] [ ]
1 1 1 1

1 1

( 1) ( ) ( ) ( ) [ ( ( ))]

( ) ( ) [ ( ( ))]

N N N Ni j i

ij xi i j i

N Nj i

xj i

k w k k k g v k

k k g v k

µ µ α

µ α

+
= = = =

+
= =

+ = +

= +

∑ ∑ ∑ ∑

∑ ∑
                                                 (27) 

This indicates that the sequence ˆ{ ( )}kµ
ℓ  is non-decreasing in 0R≥ . Observing that ˆ{ ( )}kµ

ℓ  is lower bounded by zero. 

Therefore, we give the following two cases: 

Case 1: The sequence ˆ{ ( )}kµ
ℓ  is upper bounded. Then ˆ{ ( )}kµ

ℓ  is convergent in 0R≥ . Then it follows from Lemma 4.4 that 

[ ] [ ]
lim || ( ) ( ) || 0

i j

k
k kµ µ

→+∞
− =  for all ,i j V∈ . This implies that there exists 

*

0Rµ ≥∈
ℓ  such that 

[ ] *
lim || ( ) || 0

i

k
kµ µ

→+∞
− =

ℓ ℓ  for all 

i V∈ . Recalling that 
[ ] [ ] [ ]

1 1 1
( 1) ( ) ( )

N N Ni i i

ui i i
k k u kµ µ

= = =
+ = +∑ ∑ ∑  in (27). Following a recursive step, we can get 

[ ] [ ] [ ]
1 1 0 1

( 1) (0) ( ) [ ( ( ))]
N N k Ni i i

xi i i
k g v

τ
µ µ α τ τ +

= = = =
+ = +∑ ∑ ∑ ∑ . Since 

[ ]
0 1

( ) [ ( ( ))]
i

x

N

k i
k g vα τ ++∞

= =
< +∞∑ ∑ ℓ and 

0
( )

k
kα+∞

=
= +∞∑ , we 

obtain 
[ ]

l [ ( ( ))] 0im inf
i

k
xg v τ

→+∞

+ =
ℓ . Since 

[ ]
lim || |) |( 0

j

k
x k x

→+∞
− =ɶ  for all i V∈ , we have 

[ ]
1 1

( ) ( ) ( ) 0lim || ||
N Ni

ij
k

x ijj j
w k v k w k x

=∞ =→+
− =∑ ∑ ɶ  for all i V∈ , then 

[ ]
lim || |) |( 0

i

x
k

v k x
→+∞

− =ɶ  and thus [ ( )] 0xg
+ =

ℓ
ɶ . 

Case 2: The sequence ˆ{ ( )}kµ
ℓ  is not upper bounded. Since ˆ{ ( )}kµ

ℓ  is non-decreasing, then ˆ ( )kµ → +∞
ℓ  by k → +∞ . 

Recalling that 
1

0

1 ˆˆ ˆ ˆ( ) ( ) ( ( ), ( ), ( ))
( 1)

k
H k H x

s k
α µ λ−

=
=

− ∑ ℓ
ℓ ℓ ℓ ℓ  and 

*ˆlim ( )
k

H k f
→+∞

= , then it follows from (a) in Lemma 4.1 that it 

is impossible that ˆˆ ˆ( ( ), ( ), ( ))H x k k kµ λ → +∞ . Suppose that [ ( )] 0xg
+ >

ℓ
ɶ . Then we obtain 

T Tˆˆ ˆ ˆ ˆ ˆ ˆ( ( ), ( ), ( )) ( ( )) ( ) [ ( ( ))] ( ) | ( ( )) |

ˆ ˆ ˆ( ( )) ( )[ ( ( ))]

H x k k k f x k N k g x k N k h x k

f x k k g x k

µ λ µ λ
µ

+

+

= + +
≥ +

ℓ ℓ

                                      (28) 

Taking limits on both sides of (28), then we get 

ˆˆ ˆ ˆ ˆ ˆlim inf ( ( ), ( ), ( )) lim sup( ( ( )) ( )[ ( ( ))] )
k k

H x k k k f x k k g x kµ λ µ +

→+∞ →+∞
≥ + = +∞

ℓ ℓ  

Finally, we reach a contradiction, implying that [ ( )] 0xg
+ =

ℓ
ɶ . 

In both cases, we obtain [ ( )] 0xg
+ =

ℓ
ɶ  for any 1 m≤ ≤ℓ . Similarly, we can further prove | ( ) | 0h x =ɶ . Since x X∈ɶ , then xɶ  is 

feasible and thus 
*

( )f x f≥ɶ . For another, since 

1

0

1

0

ˆ( ) ( )

( )

k

k

xα

α

−

=
−

=

∑
∑
ℓ

ℓ

ℓ ℓ

ℓ
 is a convex combination of ˆ ˆ(0), , ( 1)x x k −⋯  and 
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ˆlim ( )
k

x k x
→+∞

= ɶ , then it follows from Claim 3 and (b) in Lemma 4.1 that: 

1 1

* 0 0

1 1

0 0

ˆˆ ˆ ˆ( ) ( ( ), ( ), )) ( ) ( )
ˆlim ( ) lim lim ( ) ( )

( ) ( )

k k

k kk k k

H x x
f H k f f x

α µ λ α

α α

− −

= =
− −→+∞ →+∞ →+∞
= =

= = ≥ =∑ ∑
∑ ∑

ℓ ℓ

ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ
ɶ

ℓ ℓ
 

Hence, we have 
*( )f x f=ɶ  and thus *x X∈ɶ . 

Lemma 4.5: It holds that 
[ ] *

lim || ( ) || 0
i

k
y k f

→+∞
− = . 

Proof: Since 
[ ] [ ] [ ]( 1) ( ) ( )
i i i

yy k v k u k+ = + , 
[ ] [ ]

1
( ) ( ) ( )

Ni j

y ijj
v k w k y k

=
=∑ , then the following holds for any 1k ≥  

[ ] [ ] [ ]

1
( 1) ( ) ( ) ( )

Ni j i

ijj
y k w k y k u k

=
+ = +∑  

The following can be proven by induction on k  for a fixed 1k ′ ≥ : 

[ ] [ ] [ ] [ ] [ ] [ ]
1 1 1

( 1) ( ) ( ( ( )) ( ( 1)))
N N k Ni i i i i i

i i k i
y k y k N f x f x

′= = = =
′+ = + − −∑ ∑ ∑ ∑ℓ

ℓ ℓ                              (29) 

Let 1k ′ =  in (29) and recall that initial state [ ] [ ] [ ]
(1) ( (0))

i i i
y Nf x=  for all i V∈ . Then we obtain 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
1 1 1 1

( 1) (1) ( ( ( )) ( (0))) ( ( ))
N N N Ni i i i i i i i

i i i i
y k y N f x k f x N f x k

= = = =
+ = + − =∑ ∑ ∑ ∑                          (30) 

From (30), we can obtain 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

1 1 1
( ( 1) ( )) ( ( ( )) ( ( 1))) ( )

N N Ni i i i i i i

i i i
y k y k N f x k f x k u k

= = =
+ − = − − =∑ ∑ ∑                               (31) 

Combining (31) with 
[ ] [ ]

lim || ( ) ( ) || 0
i j

k
y k y k

→+∞
− =  gives the 

desired result. Based on the above five Lemmas, we then 

finish the prove of Theorem 4.1. 

5. Numerical Example 

In this section, we study a simple numerical example to 

illustrate the effectiveness of the proposed distributed penalty 

primal-dual subgradient algorithm. Consider a network with 

five agents. Suppose each agent i  has a function 
[ ] :if R R→ , given by 

[ ] [ ] [ ] [ ] 2 [ ] [ ] 4( ) ( ) ( )i i i i i if x a x b x c d x e= + − + −  

where the global decision vector 
T 5

1 2 3 4 5[ ]x x x x x x R= ∈ . The global inequality constraint 

function is given by 1 2 3 4 5( ) 2 3 4 5 10g x x x x x x= + + + + − , 

the global equality constraint function is give by 

1 2 3 4 5( ) 5h x x x x x x= + + + + −  and the global constraint set 

is given as: [ 3 3] [ 3 3] [ 3 3] [ 3 3] [ 3 3]X = − × − × − × − × − . 
[ ] [ ] [ ] [ ] [ ], , , ,i i i i ia b c d e  are parameters of 

[ ]if , whose values 

are randomly choosen from the intervals 

( 1,1), (0,1), ( 1,1), (0,2), ( 1,1)− − − . Consider the optimization 

problem as follows: 

5

[ ]min ( ), s. t . ( ) 0, ( ) 0,i

i Vx R
f x h x g x x X

∈∈
= ≤ ∈∑  (32) 

We solve problem (32) by employing the distributed 

penalty primal-dual subgradient algorithm (14) with the step-

size ( ) 1/ ( 1)k kα = + . Its simulation results are shown from 

Figs. 1 to 5. It can be seen from Fig. 1 that local input [ ]iu  

tends to 0  when it achieves consensus. Fig. 2 shows the state 

evolutions of all five agents, which demonstrate that all 

agents’ takes 35 10×  iterates to asymptotically achieve 

consensus. The state evolutions of dual solution µ  and λ  

are shown in Figs. 3 and 4, respectively. We can observe 

from Fig. 5 that all the agents asymptotically achieve the 

optimal value. 

 

Fig. 1. Local input 
[ ]iu  tends to 0  when achieve consensus. 
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Fig. 2. Optimal solution 
*x  of primal problem. 

 

Fig. 3. Optimal solution 
*µ  of dual problem. 

 

Fig. 4. Optimal solution 
*λ  of dual problem. 

 

Fig. 5. Optimal solution 
*f  of objective function 

[ ]if . 

6. Conclusion and Future Work 

In this paper, we formulated a distributed optimization 

problem with local objective functions, a global equality, a 

global inequality and a global constraint set defined as the 

intersection of local constraint sets. In particular, we 

considered the local constraint sets to be identical. Then, we 

proposed a distributed penalty primal-dual subgradient 

algorithm for the constrained optimization with a 

convergence analysis. Moreover, we employed a numerical 

example to show that the algorithm was asymptotically 

converge to primal solutions and optimal values. Future work 

may aim at the analysis that the local constraint sets of each 

agent are imparities. Also, we will pay attention to the 

convergence rates of the algorithms in this paper. 
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