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Abstract: The coupled nonlinear system of differential equations in 1-butanol dehydration under atmospheric and isothermal 

conditions are solved analytically for the microchannel reactor. Approximate analytical expressions of concentrations of 1-

butanol, 1-butene, water and dibutyl ether are presented by using homotopy analysis method. The homotopy analysis method 

eliminated the classical perturbation method problem, because of the existence a small parameter in the equation. The 

analytical results are compared with the numerical solution and experimental results, satisfactory agreement is noted.  
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1. Introduction 

1-Butanol, is one of the important future bio-compounds 

for bio-fuel and bio-chemical use. 1-Butanol was produced 

from renewable sources by Acetone–Butanol–Ethanol (ABE) 

fermentation process. Recently Khan et al. studied the 

dehydration reactions of different primary and secondary 

alcohols in microchannel reactors. The basic microchannel 

reactor design is based on the flow between parallel platelets 

coated with catalyst. The large aspect ratio of the channel 

provides extensive surface area in a small volume. 

Microchannel reactors were developed based on ceramic 

substrates as well as metal substrates. In both types of 

reactors, multiple layers coated with catalytic material are 

bonded, forming a monolithic structure. An added benefit of 

a layered pattern is the ability to easily scale up or down by 

adjusting the number of layers. This provides great flexibility 

in the design if desired production capacity is changed, 

without the need to redesign the reactor (as it would be the 

case in a tubular reactor) [1].  

Various approaches have been reported in the literature [2-

5], to model coated microchannel reactors for gas- phase 

reactions. In addition to kinetic studies, Spatenka et al [2] and 

Walter et al [3] developed a two dimensional dynamic model 

to simulate the coated microchannel reactor. Spatenka 

developed cylindrical channel by considering axial 

convection and axial dispersion in an empty space with the 

external mass transfer coefficient [2]. Walter modelled the 

cylindrical channel in 2D considering axial convection, 

dispersion in axial and radial direction for gas-phase [3]. 

Schmidt developed a steady state model and regarded 

catalyst layer using a slab geometry [5]. Walter observed that 

the application of plug flow model to determine kinetics was 

validated with a dynamic 2D model [3]. 

However, to the best of our knowledge, there were no 

analytical results available till date that corresponds to the 

steady-state concentrations of 1- butanol, 1-butene, water, 

dibutyl ether for all possible values of the rate constants. 

Therefore, herein, we employ homotopy analysis method to 

evaluate the steady-state concentration of 1- butanol, 1-

butene, and water and dibutyl ether.  
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2. Mathematical Formulation of the 

Problem 

The mass balance nonlinear differential equation for 

reaction scheme for 1-butanol dehydration over γ-alumina 

are given as follows [1]: 
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d
ρ

τ
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where 
AC , 

BC , 
CC  and 

DC  are the concentrations of 1- 

butanol, 1-butene, water and dibutyl ether respectively and 

bρ  is bulk density. The initial conditions for Eqs. (1) – (4) 

are represented as follows: 

At 0τ = , ( )0
iA AC Cτ = = , ( )0 0BC τ = = , 

( )0 0CC τ = = , ( )0 0DC τ = =                  (5) 

The reaction rate 
1 2,r r  and 

3r  can be represented as 

follows: 
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                                           (6) 
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3 3 Dr k C=
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where 
1k  and 

3k  are rate constants and eqK  is equilibrium 

coefficients. Substituting Eqs. (6) to (8) in the Eqs. (1) to (4), 

the following nonlinear differential equation can be obtained.  

2 1

1 1

2
2 2 0b C DA

b A b A

eq

k C CdC
k C k C

d K

ρρ ρ
τ

+ + − =           (9) 

1 32 2 0B

b A b D

dC
k C k C

d
ρ ρ

τ
− − =              (10) 

2 1

1 1 32 0C b C D

b A b A b D

eq

dC k C C
k C k C k C

d K

ρρ ρ ρ
τ

− − − + =   (11) 

2 1

1 3 0b C DD
b A b D

eq

k C CdC
k C k C

d K

ρρ ρ
τ

− + + =           (12) 

3. Analytical Expression of 

Concentrations Using Asymptotic 

Methods 

In recent years much of the attention is devoted to find the 

analytical solution for the case of strongly nonlinear 

differential equations using some asymptotic techniques. The 

idea behind asymptotic is simple: break the solution into 

more manageable pieces, each piece helping to produce a 

better and better approximation. So the first piece describes 

the system in some idealized state. To this, we may add a 

second piece representing a small perturbation to the initial 

state. Each subsequent piece, usually allows for better 

accuracy, with each piece representing smaller and smaller 

perturbations. Initially methods like Pade approximation 

method [6] and variational iteration method [7-8] have been 

widely used to study the nonlinear problems, later on Liao 

employed the fundamental ideas of homotopy in topology to 

propose a general analytic method for solving differential and 

integral equations, linear and non-linear, namely homotopy 

analysis method (HAM) [9]. A special case of HAM is 

homotopy perturbation method (HPM) [10] which was 

introduced by He, and Elçin Yusufoglu extended it to 

improved homotopy perturbation method [11], latter 

Rajendran introduced a new approach to homotopy 

perturbation method [12]. Adomian decomposition method 

[13] and modified Adomian decomposition method [14] are 

frequently used for solving non-linear problems till now. 

Among these homotopy analysis method is employed to 

solve the nonlinear ordinary differential equations Eqs. (9) – 

(12).  

4. Analytical Expression of 

Concentrations Using Homotopy 

Analysis Method 

Liao employed the basic ideas of the homotopy in 

topology to propose a general analytic method for nonlinear 

problems, namely the homotopy analysis method [15-19]. In 

recent years, homotopy analysis method has been used in 

obtaining approximate solutions of a wide class of non-linear 

differential equations in [20-23]. The method provides the 

solution in a rapidly convergent series with components that 

are elegantly computed. The main advantage of the method is 

that it can be used directly without using assumptions or 

transformations.  

Using HAM (refer Appendix A), we can obtain the 

concentrations of 1- butanol, 1-butene, water and dibutyl 

ether as follows: 
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5. Discussion 

Microchannel reactors are known for their good heat and 

mass transfer properties enabling nearly isothermal operation 

of highly exothermic or endothermic reactions. Eqs. (13)- 

(16) are the new simple analytical solution of the 

concentration of 1-butanol, 1-butene, water and dibutyl ether 

DC . The concentration profile depends upon the rate 

constants 
1k , 

3k  and the equilibrium coefficients eqK . At 

higher temperatures, higher conversion of 1-butanol and high 

selectivity to 1-butene can be achieved. As the temperate 

increases the eqK  value has decreased. This means the 

equilibrium has shifted to have more reactants and less 

products. This would happen if the reaction was exothermic. 

In exothermic reactions the reverse reaction rate will increase 

faster than the forward reaction rate when the temperature is 

increased. 

 

Figure 1. Reaction scheme for 1-butanol dehydration over γ-alumina [24]. 

Figure 2 (a-d) represents the concentration of 1-butanol 

versus space time over the kinetic parameters. Figure 2a-2b 

shows that the concentration increases when 
bρ  and the rate 

constants 
1k  decreases. Also it is inferred that the over 

uptake of 1-butanol across time is uniform when the bulk 

density 
bρ  and rate constants

1k  is very small. From Figure 

2c-2d, it is observed that for all values of rate constant 
3k  

and equilibrium coefficient eqK  the concentration will 

remain same. This is because, the eqK  is larger than one, this 

means that the concentration of the products will be higher 

than the reactants. If the eqK  value was less than one the 

concentration of reactants would be higher than the products. 
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Figure 2. Plot of the concentration of 1-butanol versus space time using Eqn. (13) for the fixed values of some parameters and various values of 1 3
, , ,

b eq
k k Kρ . 

The key to the graph: solid line represents Eq. (13) and dotted line represents numerical solution. 

 

Figure 3. Plot of the concentration of 1-butanol versus space time using Eqn. (14) for the fixed values of some parameters and various values of 1 3
, , ,

b eq
k k Kρ . 

The key to the graph: solid line represents Eq. (14) and dotted line represents numerical solution. 
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Figure 3, shows the influence of kinetic parameters over 

the concentration of 1-butene. Figure 3a, shows that the 

concentration of 1-butene versus time for various values of 

bρ  and for some fixed values of other parameters. From the 

figure it is observed that the concentration increases when 

bρ  increases. Also for all values of 
bρ  the concentration 

increases from its initial values. Figures 3b-3c, describes that 

the concentration profile of 1-butene. From the figure it is 

inferred that concentration increases when 
1k  and 

3k  

increases. From Figure 3d it is observed that the 

concentration does not significantly various for all values of 

eqK . This is because of, the rate constant generally depends 

on the absolute temperature. As the temperate increases the 

eqK  value has decreased. This means the equilibrium has 

shifted to have more reactants and less products.  

Figure 4, shows the concentration of water versus space 

time for various values of 
bρ , 

1k , 
3k  and eqK . From the 

Figure 4a-4d, we observed that for all increasing values of 

the parameters the concentration also increases. It is 

understood that the concentration is directly proportional to 

all the kinetic parameters. 

 

Figure 4. Plot of the concentration of 1-butanol versus space time using Eqn. (15) for the fixed values of some parameters and various values of 1 3
, , ,

b eq
k k Kρ . 

The key to the graph: solid line represents Eq. (15) and dotted line represents numerical solution.  

 

Figure 5. Plot of the concentration of 1-butanol versus space time using Eqn. (16) for the fixed values of some parameters and various values of 1 3
, , ,

b eq
k k Kρ . 

The key to the graph: solid line represents Eq. (16) and dotted line represents numerical solution. 
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Figure 5, describes the concentration profile of 1-butene 

over the kinetic parameters. Figure 5a - 5b, shows that the 

concentration increases for all the increasing values of 
bρ  

increases and
 1k . From Figure 5c-5d, it is inferred that the 

concentration increases when 
3k decreases and eqK

decreases.  

Figure 6, shows that the comparison of our analytical 

expressions of concentration of 1-butanol, 1-butene, and 

water and dibutyl ether with experimental results [1]. 

Satisfactory agreement is noted.  

 

Figure 6. Comparison of analytical result of concentration of 1-butanol, 1-butene, and water and dibutyl ether with experimental results (13-16). 

 

Figure 7. Phase plane with parametric plot of the absolute values of 
AC  versus CB

. The curves correspond to trajectories with the parameters rate constants 

1 3,k k  and different initial conditions.  
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In Figure 7, we introduce a graphical approach for the 

system of nonlinear differential equations (13-16) based on 

phase plane analysis. This approach has the advantage of 

incorporating the nonlinear dynamics of the system while 

being graphically described. Phase trajectories will be plotted 

with different representative initial conditions for the 

concentration of 
AC  and 

BC which is obtained by the relation 

between the concentration 
AC and 

BC . The effect of initial 

conditions on model time domain response is given in Figure 

5. In particular time domain the phase plane analysis shows 

the concentration of 
AC  is increases and 

BC decreases at high 

values of kinetic parameters 
1k , 

3k . 

The kinetic constants are also determined from the rate 

equation (6) to (8). Plot of 
1r  versus 

AC  and 
3r  versus 

DC
 

gives the slope (=
1k , 

3k .). The rate equation (7) can be 

rewritten as follows: 

2 1
12 2

C D

eqA A

C Cr k
k

KC C

 
= − ⋅ 

 
                             (17) 

Now the plot of 
2

2 Ar C versus
2

C D AC C C , gives the 

intercept 
1k

 
and slope ( )1 eqk K− . From the slope and 

intercept, we can obtain the rate constants 
3k  and equilibrium 

coefficient
 eqK  (figure 8). 

 

Figure 8. Plot of 
2

2 A
r C versus 

2

C D A
C C C using Eq. (17) for the fixed values 1

3, 2
eq

k K= = . 

 

Figure 9. The h curve to indicate the convergence region for ( )0.06AC . 
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6. Conclusions 

The system of nonlinear equations in microchannel reactor 

are solved using the homotopy analysis method (HAM). 

Analytical expression for the concentration of 1-butanol, 1-

butene, and water and dibutyl ether production are derived in 

terms of the kinetic parameters. We have compared the 

analytical results with numerical and experimental results. 

The graphical procedure for the evaluation kinetic parameters 

are also reported.  
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Appendix A 

Basic idea of homotopy analysis method 

In order to show the basic idea of HAM, we consider a 

linear or nonlinear equation in a general form: 

N[u(x; t)] = 0;                             (A1) 

where N  is a nonlinear operator ( );u x t  is an unknown 

function, x  and t  are independent variables. Let ( )0
;u x t

denote an initial approximation of the solution of equation, 

h  a nonzero auxiliary parameter, ( ),H x t  a nonzero 

auxiliary function and L  an auxiliary linear operator. For 

simplicity, we ignore all boundary or initial conditions, which 

can be treated in the similar way. By means of the HAM, we 

first construct the so-called zero-th order deformation 

equation.  

0(1 - p)L[ (x; t; p) -u (x; t)]  phH(x; t)N[ (x; t; p)];φ φ=   (A2) 

where [ ]0,1p∈  is the embedding parameter, 0h ≠  is an 

auxiliary parameter, L  is an auxiliary linear operator, 

( ); ;x t pφ is an unknown function, ( )0
;u x t  is an initial guess 

of ( );u x t  and ( ),H x t  denotes a nonzero auxiliary function. 

It is obvious that when the embedding parameter 0p =  and 

1p = , it holds 

0(x; t; 0) = u (x; t); (x; t; 1) = u(x; t);φ φ            (A3) 

respectively. Thus as p  increases from 0 to 1, ( ); ;x t pφ

varies from the initial uses ( ); ;0x tϕ to the equation ( ); ;1x tϕ

of equation. Expanding ( ); ;x t pφ in Taylors series with 

respect to p , we have 

( )0
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m
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The convergence of the series (A4) depends upon the 

auxiliary parameter h . If it is convergent at 1p = , one has 

0 m

1

u(x; t)  u (x; t) u (x; t);
m

+∞

=
= +∑                (A6) 

This must be one of the solutions of the original nonlinear 

equation. Define the vectors 

}{ 0, 1 ,
( , ), ( , ) ..... ( , )

n
u u x t u x t u x t
→

=                 (A7) 

Differentiating the zero-order deformation Eq. (A1) m-

times with respect to p  and then dividing them by !m  and 

finally setting 0p = , we get the following mth-order 

deformation equation.  
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− −
 − = ℜ  
 

           (A8) 

where 
( )

1

1 m-1

1 (x; t; p)

1 ! p

m

m m

m
u

m

φ−→

−
∂ ℜ =  − ∂ 

          (A9) 

and 

0, 1,

1, 1
m

m

m
χ

≤
=  >

 

Operating the inverse operation of 1
L

− on the both sides of 

Eq. (A5), we have 

1

1 1( ) ( , ) ( )m m m m mu t u x t hl H t uχ
→

−
− −

  = + ℜ   
  
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In this way, it is easy to obtain ( ) ( )1 2
; ; ; ;.....u x t u x t One 

after another, finally, we get an exact solution of the original 

equation. 

1

( ) ( )m

m

u t u t
+∞

=

=∑                          (A11) 

For the convergence of the above method we refer the 

reader to Liao [15]. If Eq. (A1) admits unique solution, then 

this method will produce the unique solution. If Eq. (A1) 

does not possess a unique solution, the HAM will give a 

solution among many other possible solutions.  
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Appendix B 

Solution of the non-Linear equations using Homotopy 

analysis method 

In this appendix, we derive the general solution of non-

linear reaction Eq. (9), (10), (11), (12) using Homotopy 

analysis method.  

To find the solution of Eq. (9), first the homotopy is 

constructed as follows: 
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Comparing the coefficients of like powers of p , we have 
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ρ+ =                                                                (B3) 

0 01

1 0 0 0 0 0

1 1

1 1 1 12 2 2 2 2 0
A AA b

b A b A b A b A C D

eq

dC dCdC k
p : k C k C h k C k C C C

dτ dτ dτ K

ρρ ρ ρ ρ
  

+ − + − + + − =     
   

                 (B4) 

Solving Eqs. (B3) and (B4) and using the initial condition (5), we have: 

( )
0

12
i

b
A A

k
C C e

ρ ττ −=                                                                                 (B5) 

( )
( )

( )

( )

1 31

1

1
1 31 3 1

2 22
22

1 1 3

2 24 6

1 3 1 1 3

1 1
1 2

4 2 2

1 1 1 1

4 4 6 2

b bb

ib

i i

b bb b b

i

i

k kk
Ak

A A

b b b

A
k kk k k

A

A

b b b b b

C e e
C e m C

k k k
C h

Ce e e e
C

k k k k k

ρ ρ τρ τ
ρ τ

ρ ρ τρ τ ρ τ ρ τ

ρ ρ ρ
τ

ρ ρ ρ ρ ρ

−−
−

− −− − −

    − −
 − + + −     −      = −  

   − − − −− + − +   +     

                       (B6) 

where ( )
2 2

1

3 1

4

4

ib A

b b

k C
m

Keq k k

ρ
ρ ρ

=
−

. 

Proceeding like this we can get an approximate solution of Eq. (9). According to the HAM, it can be concluded that  

( ) ( ) ( )
0 1A A A

C C Cτ τ τ≈ +                                                                           (B7) 

After putting Eqs. (B5) and (B6) in (B7), the final results can be described as Eq. (13) in the text. To find the solution of Eq. 

(10), first the homotopy is constructed as follow: 

( ) 12

1 1 31 2 2 2
i

bB B

b A b A b D

dC dC
p k C e ph k C k C

d d

τρ ρ ρ
τ τ

−   − − = − −   
   

                                        (B8) 

The approximate solution of Eq. (B13) is:  
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0 1 2

0 1 2

B B B BC C p C p C p= + + +…                                                                    (B9) 

Substituting Eq. (B9) in Eq. (B8) results in: 

( )
( ) ( ) ( )

( )

0 1 20 1 2

0 1 2

1

0 1 2

22

2

1

2 2

1 3

2
1

2 2
i

B B BB B B

b A A A

b A b D D D

d C C p C pd C C p C p
k C C p C p

p ph dd

k C e k C C p C p
τ

ρ
ττ

ρ ρ−

   + ++ +
   − + +

− =   
  − − + +    

b

 

Comparing the coefficients of like powers of p , we have  

0 120

1
2 b

i

B k

b A

dC
p : k C e

dτ

ρ τρ −=                                                               (B10) 

0 01

0 0

1 1
1 1 3

2
: 2 2 2 0

i

B BB b
b A b A b D

dC dCdC k
p k C e h k C k C

dτ dτ dτ

ρ τρ ρ ρ
   −− + − − − =      
   

                     (B11) 

Solving Eqs. (B10) and (B11) and using the initial condition (5), we have: 

0

1
2

1
i

b
B A

k
C C e

ρ τ− = − 
 

                                                                 (B12) 

( )
1 31

1

2 3 2 4
1 3

3 1 1 3

2 1 1

4 4

b b

i

k k
b A

B

b b b b

hk k C e e
C

k k k k

ρ τ ρ τρ
τ

ρ ρ ρ ρ

− − − −= − + −  
                                              (B13) 

Proceeding like this we can get an approximate solution equals to the exact solution. According to the HAM, it can be 

concluded that  

( ) ( ) ( )
0 1B B B

C C Cτ τ τ≈ +                                                              (B14) 

After putting Eqs. (B12) and (B13) in (B14), the final results can be described as Eq. (14) in the text. To find the solution of 

Eq. (11), first the homotopy is constructed as follow: 

( ) 2
11 1

1 1 1 1 3

2 421 2 2
i i

C C bb b
b A b A b A b A C D b D

eq

dC dC kk t k t
p k C e k C e ph k C k C C C k C

d d K

ρρ ρρ ρ ρ ρ ρ
τ τ

  − −− − − = − − + −  
    

     (B15) 

The approximate solution of Eq. (B15) is: 

0 1 2

0 1 2

C C C C
C C p C p C p= + + +…                                                                (B16) 

Substituting Eq. (B16) in Eq. (B15) results in: 

( )

( ) ( ) ( )
( )
( ) ( )

( )

0 1 2

0 1 2 0 1 2

0 1 2

0 1 2 0 1 2

0 1 2

2

2 2

1

2
2

1
1

1

2 21
2 1

1

2

3

2

2
1 2

4

i

i

C C C

C C C b A A A

b A A A
b

b A

b

C C C D D Db
b A eq

b D D D

d C C P C P
d C C P C P k C C P C P

d
d

k C C P C Pk t
p k C e ph

k
C C P C P C C P C Pk t

k C e K

k C C P C P

ρ
τ

τ
ρρρ
ρ

ρρ

ρ

 + +
 + +  − + +
  
  
  − + +−− − =  
  + + + + +−  −
  
    − + +













  

Comparing the coefficients of like powers of p , we have  

0 11
420 2

1 1
: 2 bb

i i

C kk

b A b A

dC
p k C e k C e

d

ρ τρ τρ ρ
τ

−−= +                                                      (B17) 
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0

0 0

11 1

0 0 0

2

1 1
421 2

1 1
1

3

2

: 2 bb

i i

C

b A b A
kC k

b A b A
b

C D b D

eq

dC
k C k C

dC d
p k C e k C e h

kd
C C k C

K

ρ τρ τ
ρ ρ

τρ ρ ρτ ρ

−−

 
+ + 

 = + + −
 + − 
 

                         (B18) 

Solving Eqs. (B17) and (B18) and using the initial condition (5), we have: 

0

2

1 12 4
1 1

4

Aib b
C Ai

Ck k
C C e e

ρ τ ρ τ− −   = − + −   
   

                                                         (B19) 

( )
( )

1 3

1 31 3 1

1

11

2 4

1 3

2 2 24 6
3 1

3 1 1 3 1 1 3

2 48

1

1 1

4 4

1 1 1 1
 

4 4 6 2

1

4 8

b b

i

i

b bb b b

i

i

b

i

k k
A

A

b b

k kk k k
b A

C A

b b b b b b b

kk
A

b

C e e
C

k k

hk k C e e e e
C hm C

k k k k k k k

C e e

k

ρ τ ρ τ

ρ ρ τρ τ ρ τ ρ τ

ρρ τ

ρ ρ

ρ
τ

ρ ρ ρ ρ ρ ρ ρ

ρ

− −

− −− − −

−−

  − −+ +     

  − − − −= − + + − +    − +   

−− +
( )3

1 3

1

4

b bk

b bk k

ρ τ

ρ ρ

−

 
 
 
 
 
 
 
 

 − 
   +  

                       (B20) 

Proceeding like this we can get an approximate solution equals to the exact solution. According to the HAM, it can be 

concluded that  

( ) ( ) ( )
0 1C C CC C Cτ τ τ≈ +                                                                                (B21) 

After putting Eqs. (B19) and (B20) in (B21), the final results can be described as Eq. (15) in the text. To find the solution of 

Eq. (12), first the homotopy is constructed as follow: 

( ) 2 2 11
3 1 1 3

4
1

i

bD Db
b D b A b A C D b D

eq

kdC dCk
p k C k C e ph k C C C k C

d d K

ρρ τρ ρ ρ ρ
τ τ

  −− + − = − + +  
    

                       (B22) 

The approximate solution of Eq. (B22) is 

0 1 2

0 1 2 ...D D D Dc c p c p c p= + + +                                                    (B23) 

Substituting Eq. (B23) in Eq. (B22) results in: 

( )

( )

( )

( ) ( )
( )( )

( )
























++++

+++++++

++−
+++

=

























−

++++

+++

−
− 2

2D1D0D3

2

2D1D0D
2

2C1C0C1

22

2A1A0A1

2

2D1D0D

1b42

iA1

2

2D1D0D3

2

2D1D0D

pCpCCb

pCpCCpCpCCkb

pCpCCb
d

pCpCCd

ph

eCb

pCpCCb

d

pCpCCd

p1

ττ

τ

 

Comparing the coefficients of like powers of p , we have 

0

0

0 2 1
3 1

4
:

i

D b
b D b A

dC k
p k C k C e

d

ρ τρ ρ
τ

−+ =                                                      (B24) 

01

1 0 0 0 0

1 2 11
3 1 1 3

4
0

i

DD bb
b D b A b A C D b D

eq

dCdC kk
p : k C k C e h k C C C k C

dτ d K

ρρ τρ ρ ρ ρ
τ

 −+ + − − + + = 
  

              (B25) 

Solving Eqs. (B24) and (B25) and using the initial condition (5), we have: 

0

2

1 1 3

3 1

4

4

ib A b b
D

b b

k C k k
C e e

k k

ρ ρ τ ρ τ
ρ ρ

− − = − −  
                                                     (B26) 
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( ) ( )

( )

1 3 3 11

3

1
1 31

2 4 62

3 1 1 3 1

2 84

1 3 1

1 1 1

4 4 2 6

1 1

4 4 8

b b bb

i

i i

b

b bb

i

k k k kk
A

A A

b b b bk

D
k kk

A

b b b

C e e e
m C C

k k k k k
C he

C e e

k k k

ρ ρ τ ρ ρ τρ τ

ρ τ

ρ ρ τρ τ

τ
ρ ρ ρ ρ ρ

ρ ρ ρ

− + −−

−

− +−

     − − −
 + − − −       − −       =  

  − −− −  −    

                   (B27) 

Proceeding like this we can get an approximate solution 

equals to the exact solution. According to the HAM, it can be 

concluded that 

( ) ( ) ( )
0 1D D DC C Cτ τ τ≈ +                      (B28) 

After putting Eqs. (B26) and (B27) in (B28), the final 

results can be described as Eq. (16) in the text.  

Appendix C 

Determining the Validity Region of h 

The analytical solution represented by (13), (14), (15) and 

(16) contains the auxiliary parameter h , which gives the 

convergence region and rate of approximation for homotopy 

analysis method. The analytical solution should converge. It 

should be noted that the auxiliary parameter h controls the 

convergence and accuracy of the solution series. In order to 

define region such that the solution series is independent of 

h , a multiple of h curves are plotted. The region where the 

distribution of 
AC , 

BC , 
CC and 

DC  versus h  is a horizontal 

line is known as the convergence region for the 

corresponding function. The common region among 

concentrations is known as the overall convergence region. 

To study the influence of h on the convergence of solution, 

the h curves of ( )0.06
A

C are plotted in Figure 9. This figure 

clearly indicates that the valid region of h is about (−0.5 to 

0.6). Similarly we can find the value of the convergence-

control parameter h for different values of constant 

parameters. 

Appendix D 

Nomenclature 

AC : Concentration for 1-butanol (
3mol m−
) 

BC : Concentration for 1-butene (
3mol m−
) 

CC : Concentration for water (
3mol m−
) 

DC : Concentration for dibutyl ether (
3mol m−
)

 

τ : Space time
 

1 3,k k : Reaction rate constant (
3 1 1m mol s− −

) 

bρ : Bulk density (
3kg m−

) 

eqK : Equilibrium coefficients (None) 
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