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Abstract: In this paper we examine the how to of deriving analytical solution in steady-state for non-truncated single-server 

queueing and service time are fixed (deterministic) with addition the concept balking, using iterative method and the 

probability generating function. Some measures of effecting of queuing system are obtained using a smooth and logical manner 

also some special cases of this system. Finality, some numerical values are given showily the effect of correlation between the 

( )0 , , ,n qp p L W  and the additional concepts. 
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1. Introduction 

The queueing M/D/1 of queues that did not taking the right 

of study, especially when adding some concepts of loss of 

impatient. Oliver [1] in 1968 he studied the waiting time 

distribution for the constant service queue (M/D/1). Iversen 

[2] studied exact calculation of waiting time distributions in 

queueing systems with constant holding times. Iversen and 

Staalhagen [3] in 1999 he studied waiting time distribution in 

queue M/D/1. Brun and Garcia [4] derived an analytical 

solution of finite capacity for queue M/D/1. Koba [5] search 

Stability condition for M/D/1 retrial queuing system with a 

limited waiting time. Also Koba [6] in 2000 studied the An 

M/D/1 queuing system with partial synchronization of its 

incoming flow and demands repeating at constant intervals. 

A series expansion for the stationary probabilities of an 

M/D/1 queue is obtained by Nakagawa [7]. And, Prasad and 

Usha [10] in 2015 studied comparison between M/M/1 and 

M/D/1 queuing models to vehicular traffic at Kannyakumari 

district. Other related studies are presented by Hussain et al. 

[11], Kim and Kim [12] and Baek et al. [13]. Recently, 

Kotobi and Bilén [14] focused Spectrum sharing via hybrid 

cognitive players evaluated by an M/D/1 queuing model. 

In this paper, we have proposed analytical solution of the 

steady-state in the non-truncated single-channel Markovian 

queue M/D/1 subject to balking. The probability that there 

are n customers in the system, the probability of empty 

system and some measures of effectiveness are obtained 

using iterative method, probability generating function. Some 

special cases are deduced. Finally, a simulation study has 

been considered to illustrate the numerical application for the 

model.  

2. Basic Notations and Assumptions  

To construct the system of this paper, we define the 

following parameters: 

( )zP = The Probability generating function. 

np = Stead-state probability that there are n customers in 

the system. 

λ = Mean arrival rate. 

µ = Mean service rate. 

D = The fixed time of service between each customer and 

the other. 

n=Number of customers in the system. 

β = The probability that the customer joins the queue. 

Dρ λ=  = Utilization factor.  

L = Expected number of customers in the system.
 

qL = Expected number of customers waiting to be served. 

W = Expected waiting time in the system.
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qL = Expected waiting time in the queue.
 

The assumptions of this model are listed as follows: 

(1) Customers arrive at the server one by one according to 

Poisson process with rate 
n

λ . Assume ( )1 β−  be the 

probability that a customer balks, 0 1β≤ < , 1n ≥ ; and 

1, 0nβ = = . Thus it is clear that: 

, 0

, 1
n

n

n

λ
λ

β λ
=

=  ≥
 

(2) Service times of the customers are deterministic time D 

with rate 
µ

, where  

0 ,

1 ,

no service

timer unit
µ 

= 


 

(3) A single server serves entities one at a time from the 

front of the queue, according to a first-come, first-

served discipline. When the service is complete the 

entity leaves the queue and the number of entities in 

the system reduces by one. 

(4) The buffer is of infinite size, so there is no limit on the 

number of entities it can contain. 

3. Model Formulation and Analysis  

Due to the lack of a Poisson condition for the server, it is 

using the equation a no degenerate solution to the stationary 

to find np , where  

1

p pA

pe
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 =

                                              (1) 
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Then  
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                          (3) 

From equations (1), (2) and (3), we get: 

0 0 1p e p e pλ λ− −= +                                (4) 

1 0 1 2p e p e p e pβλ βλ λβλ βλ− − −= + +                 (5) 

( ) ( )2 2

2 0 1 2 3
2! 2! 1! 0!

e e e e
p p p p p

βλ βλ βλ λβλ βλ βλ− − − −
= + + +                                                   (6) 

( ) ( ) ( ) ( )3 3 2
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e e e e e
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Thus  
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1 0 1

1

, 1
! !

nin

n n i n
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e e
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To be finding explicit 0p  in λ , we use the probability generating function ( )P z  whereas: 

( )
0

n
n

n

P z p z

∞

=

=∑  and ( )
0

n
n

n

a z a z

∞

=

=∑                                                                  (10) 

Multiplying each equation (4), (5), (6) and (8) by the appropriate power of z, we obtain:  

0 0 0 0 1zp a p z a p z= +                                                                                 (11) 
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2 2 2 2
1 1 0 1 1 0 2p z a p z a p z a p z= + +                                                                       (12) 

3 3 3 3 3
2 2 0 2 1 1 2 0 3p z a p z a p z a p z a p z= + + +                                                            (13) 

1 1 1 1 1
0 1 2 1 3 2 ...n n n n n

n n n n np z p a z p a z p a z p a z+ + + + +
− −= + + + +                                                 (14) 

Taking 

0n
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=
∑ into equation (14), we get: 
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From (10) and (15), obtain as: 
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Substituting equation (10) into (16), we find: 
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Multiplying numerator and the denominator of the 

equation (17) in 
( )( ) 1
1 z

e e e
βλ λ βλ

−− − − −+ − , we obtain: 
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Using the fact that ( )1 1P = , along with LHopitals rule, we 

find: 

( ) ( )1 1

0 1 1 1p e e e e
λ βλ λ βλβλ

− −− − − − = + − − + −  
    (20) 

4. Measures of Effectiveness 

To calculate the expected number of units in the system, 

using as: 

( )
0

n

n
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∞

=

= =∑                                (21) 
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From equation (9) and (22), we find: 
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From equation (24) and same algebra, we get: 

( )0 1C pβλ βλ= + ,                                                                       (25) 
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From equation (21), (22), (25) and (26), we find: 

( ) ( ) ( )
( )

01 1 2 1

2 1

p
L

βλ βλ βλ
βλ

+ + − −
=

− ,                  (27) 

Also, calculate the expected number of units in the queue, 

using as: 

( )01qL L p= − − ,                             (28) 

So, calculate the expected waiting time in the system, 

using as: 

W L λ= ,                                        (29) 

And, Calculate expected waiting time in the queue, using 

as: 

q qW L λ=                                   (30) 

Where  

( ) ( )1 1

0 1 1 1p e e e eλ βλ λ βλβλ
− −− − − − = + − − + −  

    (31) 

5. Special Cases 

Some queuing systems can be obtained as special cases of 

this system: 

Case (1): Let 1β = , this is the queue: M/D/1 without any 

concepts. Then relations (9), (20), (27), (28), (29) and (30) 

are expressed as: 

The steady-seat probability that there n customers in the 

system is: 

1 0

0

, 0
! !

n i n

n n i

i

e e
p p p n

i n

λ λλ λ− −

− +
=

= + ≥∑ ,         (32) 

The steady-seat probability that there are no customers in 

the system is: 

0 1p λ= − ,                                     (33) 

The expected number of customers in the system is: 

21

2 1
L

ρρ
ρ

 
= +   − 

,                           (34) 

The expected number of units in the queue is: 

21

2 1
qL

ρ
ρ

 
=   − 

,                                  (35) 

The expected waiting time in the system is: 

1
1

2 1
W

ρ
ρ

 
= +  − 

,                                (36) 

And the expected waiting time in the queue is: 

1

2 1
qW

ρ
ρ

 
=  − 

                                (37) 

where ρ λ=   

Relations (32-37) are the same results as Harris [9], Brun 

and Garcia [4] and Iversen [2]. 

Case (2): Let 1β =  and service times of the customers are 

exponential random variables with rate 
nµ µ= , this is the 

queue: M/M/1 without any concepts. Then relations (20), 

(27), (28), (29) and (30) are expressed as: 

The steady-seat probability that there are no customers in 

the system is: 

0 1p ρ= − ,                                  (38) 

The expected number of customers in the system is: 

1
L

ρ
ρ

=
−

,                                   (39) 

The expected number of units in the queue is: 

2

1
qL

ρ
ρ

=
− ,                                (40) 

The expected waiting time in the system is: 

1

1
W

ρ
λ ρ
 

=  − 
,                             (41) 

And the expected waiting time in the queue is: 

21

1
qW

ρ
λ ρ
 

=   − 
                              (42) 

where ρ λ µ=   

Relations (38-42) are the same results as Harris [9], Prasad 

and Usha [10]. 

6. An Illustrative Example  

The results of 0p
 
and L  for different values of β  and λ  

are shown in the following table1: 
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Table 1. The results of 0p  and L . 

ββββ  λλλλ  0000pppp  L  

0.150 0.050 0.999 0.004 

0.300 0.200 0.923 0.092 

0.450 0.350 0.872 0.160 

0.600 0.500 0.755 0.349 

0.750 0.650 0.510 0.720 

0.880 0.780 0.295 1.430 

0.950 0.900 0.130 3.340 

Solution of the model may be determined more readily by 

plotting 0p  against β  and λ  as shown in Figure 1. Also L  

is drawn against β  and λ  as given in Figure 2. 

As we can see in figure 1, shows that the increased the 

both of (arrival rate and Balking) offset it decrease the 

probability that there are no customers in the system. It is 

seen in figure 2; shows that the increased the both of (arrival 

rate and Balking) offset it increase the expected number of 

customers in the system. 

 

Figure 1. The relation between 0p  & ( )andβ λ
. 

 
Figure 2. The relation between L  & ( )andβ λ

.
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Also, assume the n = 3 units. The results of 0p ,

1 2 3, , ,p p p L  and qW  for different values of λ  are shown in 

the following table 2: 

Table 2. The results of 0p  and L
 
without any concepts. 

λλλλ  0000pppp  1111pppp  2222pppp  3333pppp  L  qW  

0.1 0.9 0.05 0.01 0.0002 0.11 0.060 

0.2 0.8 0.18 0.02 0.0020 0.23 0.125 

0.3 0.7 0.24 0.05 0.0070 0.36 0.214 

λλλλ  0000pppp  1111pppp  2222pppp  3333pppp  L  qW  

0.5 0.5 0.32 0.12 0.0400 0.75 0.500 

0.7 0.3 0.30 0.18 0.1000 1.52 1.170 

0.8 0.2 0.25 0.19 0.1300 2.40 2.000 

0.9 0.1 0.15 0.14 0.1150 5.00 4.500 

Solution of the model may be determined more readily by 

plotting 0 1 2 3, , , ,p P P p L  and qW against λ  as given in 

Figures 3, 4, 5, 6, 7 and 8 respectively. 

 
Figure 3. The relation between 0p

 
& λ . 

 
Figure 4. The relation between 1p

 
& λ . 
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Figure 5. The relation between 2p

 
& λ . 

 
Figure 6. The relation between 3p

 
& λ . 
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Figure 7. The relation between L  & λ . 

 

Figure 8. The relation between qW  & λ . 
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As figure 3, shows that the increased the arrival rate offset 

it decrease of the probability that there are no customers in 

the system. Also, from figures 4, 5 and 6, note all increased 

in arrival rate Offset by an increase and then decrease in the 

probability that there are n of customers in the system. And 

in figures 7 and 8, shows that the increased the arrival rate 

offset it increase in the expected number of customers in the 

system and the queue. 

7. Conclusion 

This paper has explained the analytical solution in steady-

state for M/D/1 with addition the concept balking a 

probability generating function and iterative method were 

devised to determine the probability that there are n 

customers in the system, the probability that no customers are 

in the service department, the expected number of customers 

in the system and the expected number of customers in the 

queue. Finally, the numerical example was confirmed to 

confirm the model. 
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