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Abstract: In this study, the problem of determining the control function that is at the right hand side of a hyperbolic system 
from the final observation is investigated. Using the Fourier-Galerkin method, the weak solution of this hyperbolic system is 
obtained. The necessary conditions for the existence and uniqueness of the optimal solution are proved. We also find the 
approximate solutions of the test problems in numerical examples by a MAPLE® program. Finally, the numerical results are 
presented in the form of tables. 
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1. Introduction 

The problem of determining the control function that is at 
the right hand side of the hyperbolic system has been studied 
by different authors. Lions [3] examined the problems in 
detail when the control function is at the right hand side of 
the hyperbolic problem by using different cost function. 
Periago [4] has investigated the problem of optimizing the 
shape and position of the support of the internal exact control 
of minimal ���0, �� � norm for the 1-D wave equation. 

Yamamoto [5] has studied the inverse problem of 

determining 	�
�  from 
���
�
��  subject to the hyperbolic 

problem 

����
, �� � ∆��
, �� � ����	�
�, 
 ∈ Ω, � � 0 

��
, 0� � 0, ���
, 0� � 0, 
 ∈ Ω 

��
, �� � 0, 
 ∈ �Ω, � � 0	 
where � ∈ ���0, ��. 

Benamou [6] has used the domain decomposition method 
to solve the optimal control problem in the hyperbolic system 
and has taken the set of admissible control as a convex subset 
of ����0, �� � Ω�. 

Kim and Pavol [7] have minimized the cost functional 

�� � � ! ! "#$��
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governed by periodic nonlinear 1-D wave equation. The 
necessary and sufficient conditions for an admissible pair 
��∗,  ∗� ∈ �-�ℚ� � �-�ℚ�, ℚ � �0, /� � �0, ��  to be an 
optimal pair have given by authors. 

Lopez at all. [8] have considered problem of controlling 
the function 	�
, �� related to the hyperbolic problem 

0�11 � ∆� � �1 � 	13 	�
, �� ∈ Ω � �0, ��	 
��
, 0� � �*�
�, �1�
, 0� � ���
�, 
 ∈ Ω 

��
, �� � 0, �
, �� ∈ �Ω � �0, ��. 
Privat et al. [9] have minimized the norm of the control for 

given initial data in the wave equation defined on �0, /� with 
Homogeneous Dirichlet boundary condition when the control 
is in at the right hand side of the equation. 

Subaşı and Saraç [10] have obtained a minimizer function 
for the optimal control problem of the initial velocity in a 
wave equation. 

Saraç and Şener [11] have determined the transverse 
distributed load in Euler-Bernoulli beam problem from of 
admissible control. The set of admissible controls has been 
taken as a subspace of the space ��56, 78. 

Saraç [12] has obtained symbolic and numeric solutions by 
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using the initial velocity as a control function in hyperbolic 
problem. 

Şener et al. [14] have explained applications of the 
Galerkin method to wave equation. 

The problem of determining of unknown spatial load 
distributions in a vibrating Euler–Bernoulli beam from 
limited measured data has been solved in [16]. 

The space ���0, ��  consist of the functional which are 
square integrable, inner product and norm in ���0, ��  are 
defined respectively as; 

��,  �9: = ; ��
� �
�(
<*  and ‖�‖9: = >��, ��9: . 
Let ?@A be closed, convex subset of ���0, ��. 
In this study, we consider an optimal control problem for a 

wave equation with homogeneous Dirichlet boundary 
conditions, the control being the one from the functions that 

are at the right hand side of the equation. We determining the 
unknown function  �
�  in the closed and convex subset ?@A ⊂ ���0, �� from the target ��
, �;  �, which correspond 
to final position using �� − norm. We are interested in 
generating Maple® procedure easy to used for obtaining 
approximate optimal control. The useful approximate optimal 
control function is easily obtained in some numeric 
examples. 

We consider the following final optimal control problem: 
Choose a control  �
� ∈ ���0, �� and a corresponding � such 
that the pair � , �� minimizes the functional 

�D� � = ‖��
, �;  � − E�
�‖9:�*,<�� + F‖ �
�‖9:�*,<��    (1) 

subject to the hyperbolic problem; 

�11 − 6��GG = 	��� �
�, �
, �� ∈ Ω ≔ �0, �� × �0, �8��
, 0� = I�
�, �1�
, 0� = J�
�, 
 ∈ �0, ����0, �� = 0, ���, �� = 0, � ∈ �0, �8. 	                                               (2) 

where E is given target function and I,J and 	  are known 
functions. 

With the choice of the functional in (1), we mentioned the 
observation of ��
, �;  �  in ���0, ��  for the control  ∈���0, ��.  Our aim is to obtain suitable function  ∗  which 
approaches the solution of the problem (2) to desired target E�
� ∈ ���0, �� at the final time � = � . Another word, we 
want to find the function  ∗ ∈ ?@A such that 

Inf	�D� � = �D� ∗�. 
Here F > 0  is a regularization parameter which ensures 

both the uniqueness of the solution and a balance between the 
norms ‖��
, �;  � − E�
�‖9:�*,<�� 	 and ‖ �
�‖9:�*,<�� . Detailed 

information as regards the regularization parameter can be 
found in [2]. The term ‖ ‖�9:  is called penalization term; its 

role is to avoid using too large controls in the minimization 
of �D� �. 

In system (2), the term 	��� �
� is considered to be an 
external force. External forces in this form of separation of 
variables are important in modelling vibrations. In [5] 
Yamamoto point out that the system (2) is regarded as 

approximation to a model for elastic waves from a point 
dislocation source. 

This paper is organized as follows. In section 2, we state 
the definition for solution of the wave equation considered 
and give the necessary conditions for the existence and 
uniqueness of the optimal solution. In section 3, we give 
Frechet derivative of the cost functional and construct a 
minimizing sequence that converge to the optimal solution. 
In the last section, we obtain the approximate solutions on 
numeric examples. 

2. Existence of Unique Optimal Solution 

In this section, we give the solvability of the optimal 
control problem (1)-(2). First we state the generalized 
solution of the hyperbolic problem (2) in view of [1]. 

Definition 2.1. The generalized (weak) solution of the 
problem (2) will be defined as the function � ∈ K*��Ω�, with ��
, 0� = I�
�, 
 ∈ �0, ��  which satisfies the following 
integral identity: 

; ; �−�1L1 + 6��GLG�(
(�<*+* = ; ; 	 L(
(�<*+* + ; JL�
, 0�<* (
                                         (3) 

for all L ∈ K*��Ω� with L�
, �� = 0. To have this solution the followings are needed; 

	 ∈ 	 ���0, ��,  ∈ 	 ���0, ��, I ∈ K*��0, ��, J ∈ ���0, ��                                                     (4) 

Theorem 2.2. Suppose that the condition (4) holds, then the problem (2) has a unique generalized solution and the following 
estimate is valid for this solution; 

‖�‖K01�Ω�� ≤ N*	�‖I‖K01�0,l�� + ‖J	‖�2�0,��� + Q		Q�2�0,��� ‖ 	‖�2�0,��� 	�                                          (5) 

Proof of this theorem can easily be obtained by Galerkin 
method used in [1]. 

Let’s give the increment ∆  to   such that  +	∆ ∈ ?@A 

and show the solution of (2) corresponding  +	∆  by �∆ = ��
, �;  +	∆ � . Then the function ∆� = �∆ − �  will 
be the solution of the following difference problem: 
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∆�11 =	6�∆�GG + 	���∆ �
� 
∆��
, 0� = 0, ∆�1 	�
, 0� = 0                     (6) 

∆��0, �� = 0, ∆���, �� = 0 

Lemma 2.3: Let ∆�  be the solution of the problem (6). 
Then the following estimate is valid: 

‖∆��
, ��‖�2�0,�� ≤ N�	‖∆ ‖�2�0,��                  (7) 

Proof: We can proof this lemma in view of [15]. We 
multiply both sides of the hyperbolic equation (6) by ∆�1 , 
then integrate it on 50, �8 . After some transformations, we 
have 

12 ((� R! 5�∆�1�� + 6��∆�G��8(
<
* S = ! 	���∆ �
�∆�1�
, �;  �(
<

* + 6��∆�G∆�1�|GU*GU< . 
Using here the homogeneous boundary conditions of the system (6), we get 

12 ((� R! 5�∆�1�� + 6��∆�G��8(
<
* S = ! 	���∆ �
�∆�1�
, �;  �(
<

* . 
Integrating both sides on 50, �8, � ∈ 50, �8, we get 

V���� = ! ! 	�W�∆ �
�∆�1�
, W;  �(
<
* (W1

* , ∀� ∈ 50, �8 
where 

V���� = 12! 5�∆�1�� + 6��∆�G��8(
<
* , � ∈ 50, �8 

We differentiate both the sides 

2V���V���� = ! 	���∆ �
�∆�1�
, �;  �(
<
* , ∀� ∈ 50, �8. 

Appling to the right-hand side the Cauchy inequality, we obtain 

2V���V���� ≤ 	���‖∆ ‖9:�*,<�‖∆�1‖9:�*,<�, ∀� ∈ 50, �8. 
Since we have 

‖∆�1‖9:�*,<�� ≤ ! 5�∆�1�� + 6��∆�G��8(
<
* = 2V����, ∀� ∈ 50, �8 

we get 

V���� ≤ 1√2	���‖∆ ‖9:�*,<�, ∀� ∈ 50, �8.	 
Integrating both the sides on 50, �8, � ∈ 50, �8 and taking into account V�0� = 0, we obtain 

V��� ≤ 1√2 ‖∆ ‖9:�*,<�! 	�W�(W1
* , ∀� ∈ 50, �8. 

Substituting in last inequality � = �, we write 

V��� ≤ �√2 ‖∆ ‖9:�*,<� 
where ; 	���(�+* ≤ � (� is a constant). 

We have  
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! 5∆��
, ��8�(
<
* = ! Z! ∆�1�
, ��(�+

* [� (
<
*

	≤ �! ! 5∆�1�
, ��8�(�(
+
*

<
*

	≤ 2�! V����(�+
* .

 

Combining last inequalities, we get 

! 5∆��
, ��8�(
<
* ≤ 2�! ��2 ‖∆ ‖9:�*,<�� (�+

*	≤ �����‖∆ ‖9:�*,<��  

which implies the required estimate (7). 
We can write the cost functional (1) in the following way; 

�D� � = !5��
, �;  � − ��
, �; 0� + ��
, �; 0� − E�
�8�<
*

(
 + 	F ! �<
*

(
 

So we rewrite �D� � as 

�D� � = /� ,  � − 2� + 7                                                                                 (8) 

for 

/� ,  � = ; 5��
, �;  � − ��
, �; 0�8�<* (
 + 	F ;  �<* (
                                                     (9) 

� = ; 5��
, �;  � − ��
, �; 0�85E�
� − ��
, �; 0�8(
<*                                                    (10) 

and 

7 = ; 5E�
� − ��
, �; 0�8�<* (
                                                                     (11) 

Due to the linearity of the transform  → �5 8 − �508, it can easily be seen that the functional /� ,  � is bilinear and 
symmetric. Further, we write the following; 

|	/� ,  �| ≥ F‖ ‖9:�*,<��                                                                            (12) 

and this implies the coercivity of /� ,  �. Since 

/� , L� = !5��
, �;  � − ��
, �; 0�8<
*

5��
, �; L� − ��
, �; 0�8(
 + 	F ! L(
<
*

 

applying Cauchy-Schwartz inequality and using (7), we get 

|	/� , L�| ≤ N�‖ ‖�2�0,��‖L‖�2�0,��                (13) 

for N� = ^6
_N�, F`. Then /� , L� is continuous. 
The functional �  is linear. We can easily write that 

� ≤ Na‖ ‖�2�0,��                                 (14) 

using (7). Hence we see that the functional � 	is continuous. 
Theorem 2.4. Let /� ,  �  be a continuous symmetric 

bilinear coercive form and �  be a continuous linear form. 
Then there exists a unique element  ∗ ∈ 	?@A such that 

�D� ∗� = Infe	∈	fgh �D� �. 
Proof of this theorem can easily be obtained by showing 

the weak lower semi-continuity of �D same as in [3]. 

3. Frechet Differential of the Cost 

Functional and Minimizing Sequence 

Let us introduce the Lagrangian ���,  , i� given by 

���,  , i� = ; 5��
, �;  � − E�
�8�<* (
 + 	F ;  �(
<* + ; ; 5�11 − 6��GG − 	��� �
�8i(
(�<*+*                    (15) 
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Using the j� = 0 stationarity condition, we get the following adjoint problem: 

i11 −	6�iGG = 0i�
, �� = 0, i1�
, �� = 25��
, �;  � − E�
�8i�0, �� = 0, i��, �� = 0                                                               (16) 

Now, we investigate the variation of the functional �D� �. The difference functional  ∆�D� � = �D� + ∆ � − �D� �	is such as 

∆�D� � = ; 52��
, �;  � − 2E�
�8∆��
, ��(
<* +	; 5∆��
, ��8�<* (
 + F ; �2 + ∆ �∆ (
<*                    (17) 

Here, the term 

2!5��
, �;  � − E�
�8∆��
, ��(
<
*

 

must be evaluated. Using the problems (6) and (16) we have 

2!5��
, �;  � − E�
�8∆��
, ��(
<
*

= −!!	���i�
, ��∆ �
�(
(��
0

�
0  

So the relation (17) can be written as 

∆�D� � = ; k−; 	���i�
, ��+* + 2F l ∆ (
<* +	; 5∆��
, ��8�(
<* + F ; �∆ ��(
<* .                              (18) 

Using Lemma 2.3 in the (18), we can write the following equality: 

∆�D� � = 〈−!	���i�
, ��(�+
*

+ 2F , ∆ 〉9:�*,<� + o�‖ ‖9:�*,<�� � 
By the definition of Frechet differential at  ∈ ?@A we get the gradient 

�D� � � = −!	���i�
, ��(�+
*

+ 2F . 
So, we can state the following theorem in view of [2]. 
Theorem 3.1. The control  ∗ and the state �∗ = �� ∗� are optimal if there exists a multiplier i∗ ∈ ?@A  such that i∗ and  ∗ 

satisfy the following optimality conditions: 

〈−; 	���i∗�
, ��(� + 2F ∗,  −  ∗+* 〉	�2�0,�� 	≥ 0                                                   (19) 

for ∀ ∈ ?@A . 
Now, we can apply standard steepest descent iteration. We write an iterative procedure to compute a sequence of controls _ p` convergent to the optimal one. 
Select an initial control  *. If  p is known �q ≥ 0� then  pr� is computed according to the following scheme. 
1. Solve the state problem (2) in the sense (3) and get corresponding �p. 
2. Knowing �p	solve the adjoint problem (16). 
3. Using ip get the gradient ��D� �p 
4. Set  

 pr� =  p − sp 	�D� � p�                                                                                  (20) 

and select the relaxation parameter sp in order to assure that 

�D� pr�� − �D� p� = sp t−‖�D� � p�‖� + u�vw�vw x 	< 	0                                                    (21) 

for sufficiently small sp 	> 0. The term o�sp� is infinite decreasing term with high order respect to sp. Computations of the sp 
can be carried out by one of the methods shown in [13]. 

One of the following can be taken as a stopping criterion to the iteration process; 
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‖ pr� −  p‖ < 0�, |	�D� pr�� − �D� p�| < 0�, ‖�D� � p�‖ < 0a. 

Lemma 3.2. The cost functional (1) is strongly convex with the strong convexity constant F.  
From the following strongly convex functional definition for z ∈ 50,18: 

�D�z � + �1 − z� �� ≤ z�D� �� + �1 − z��D� �� − {z�1 − z�‖ � −  �‖9:�*,<��  

we can see that cost functional (1) is strongly convex the constant { = F. 
So, we can give the following theorem which states the convergence of the minimizer to optimal solution. 
Theorem 3.3. Let  ∗ be optimum solution of the problem (1)-(2). Then the minimizer given in (20) satisfies the following 

inequality; 

‖ p −  ∗‖� ≤ �D $�D� p� − �D� ∗�%, q = 0,1,2, …                                                       (22) 

Proof of this theorem is obtained by taking z = �� in the definition of the above strongly convex functional. 

4. Numerical Example 

In this section we test the method in a numerical example. The used trigonometric basis functions are chosen such as; 

}~2� sin "/� 
' , ~2� sin �2/� 
� , ~2� sin �3/� 
� , . . , ~2� sin ��/� 
�� 

for the generalized solution of the hyperbolic problem (2). 
Example 4. 1: Let us consider the following problem of 

minimizing the cost functional: 

�D� � = ! 5��
, 1;  �8�(
�
* + F!  �(
�

*  

under the following condition: 

�11 − �GG = �� − 1� �
�, �
, �� ∈ �0,2� × �0,18 
��
, 0� = − � 
a + 
� 0 < 
 ≤ 1−7
� + 19
 − 10 1 ≤ 
 ≤ 2 

�1�
, 0� = � 
a + 
� 0 < 
 ≤ 1−7
� + 19
 − 10 1 ≤ 
 ≤ 2 

��0, �� = 0, ��2, �� = 0, � ∈ �0,18. 
The weak solution of this problem is 

��
, �� = �� − 1� � 
a + 
� 0 < 
 ≤ 1−7
� + 19
 − 10 1 ≤ 
 ≤ 2. 

The function � and its partial derivatives �G, �1  belong 
to ��Ω� . The function ��
, ��  is not a classical solution 
since �GG ∉ ��Ω� . Here the force function is 
discontinuous. 

Rewrite the functional as 

�D� � = �D�� � + F�D�� � 
where 

�D�� � = ! 5��
, 1;  �8�(
�
*  

�D�� � = !  �(
�
*  

Choosing F = 0.1, starting the initial element  * = ���/
 
and the relaxation parameter sp = 0.1 assures the inequality �*.�� pr�� < �*.�� p�. 

We get the following approximate minimizing function 
and the values of the �*.�� � ��� and �*.�� � ���, respectively; 

 �� = −0.088086149 sin�3.14159265
� − 1.66789652 sin�1.57079632
�	−0.011854776 sin�4.71238898
� + 0.00127332 sin�6.28318530
�	−0.000781035 sin�7.85398163
� − 0.00106163 sin�9.42477796
�	−0.000162151 sin�10.9955742
� + 0.00003977 sin�12.5663706
�	−0.000042586 sin�14.1371669
� − 0.00008255 sin�15.7079632
�
, 

�*.�� � ��� = 5.303067954, 
�*.�� � ��� = 2.789781915 

when the stopping criteria �*.�� pr�� − �*.�� p� > −0.2 × 10�� are chosen.  
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Table 1. The values of functions and iteration numbers for different F values of Example. 

� �����∗� �����∗� �
 0.9 5.880206210 0.0502480698 15 

0.7 5.855965285 0.0801608045 18 
0.5 5.812154139 0.1484081594 23 
0.2 5.606363377 0.7782944222 47 
0.08 5.148875247 4.2750794700 112 
0.06 4.927442646 7.1645327120 147 
0.05 4.764295988 9.8422178970 174 

Table 2. The values of �D�� ∗�, �D�� ∗� and the optimal controls  ∗ for different F values of Example. 

� �����∗� �����∗� �∗ 
0.9 5.8802062 0.0502480 

	0.0183201sin�3.141592
� −0.224057sin�1.570796
�−0.0015055sin�4.712388
� + 0.000161sin�6.283185
�−0.0000991 sin�7.853981
� − 0.000134 sin�9.424777
�−0.000020sin�10.99557
� + 0.0000087sin�12.56637
�−0.000005sin�14.137166
� − 0.000011sin�15.70796
�
 

0.5 5.8121541 0.1484081 

	0.0322759sin�3.141592
� −0.223405sin�1.570796
�−0.002602sin�4.712388
� + 0.0002792sin�6.283185
�−0.000171 sin�7.853981
� − 0.0002328 sin�9.424777
�−0.000035sin�10.99557
� + 0.0000087sin�12.56637
�−0.000009sin�14.137166
� − 0.000018sin�15.70796
�
 

0.2 5.6063633 0.7782944 

	0.0150037sin�3.141592
� −0.882060sin�1.570796
�−0.006088sin�4.712388
� + 0.0006535sin�6.283185
�−0.0004001 sin�7.853981
� − 0.000544 sin�9.424777
�−0.000083sin�10.99557
� + 0.0000020sin�12.56637
�−0.000002sin�14.137166
� − 0.000042sin�15.70796
�
 

0.08 5.1488752 4.2750794 

	0.1593668sin�3.141592
� −2.061421sin�1.570796
�−0.014898sin�4.712388
� + 0.0016001sin�6.283185
�−0.000981 sin�7.853981
� − 0.0013346 sin�9.424777
�−0.000203sin�10.99557
� + 0.0000501sin�12.56637
�−0.000053sin�14.137166
� − 0.000103sin�15.70796
�
 

0.05 4.7642959 9.8422178 

−0.339056sin�3.141592
� −3.118764sin�1.570796
�−0.023551sin�4.712388
� + 0.0025322sin�6.283185
�−0.001552 sin�7.853981
� − 0.0021105 sin�9.424777
�−0.000322sin�10.99557
� + 0.0000791sin�12.56637
�−0.000084sin�14.137166
� − 0.000164sin�15.70796
�
 

 

5. Conclusion 

In this paper, we show that the external force in the wave 
equation be controlled by minimizing the distance between 
final situation distance and the desired target function. By 
using the adjoint approach in the mathematical analysis of 
the optimal control problem for wave equation, the gradient 
of the cost functional can be obtained. The minimizing 
sequence is constructed via this gradient. 
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