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Abstract: In 1974, an French engineer, J. Morlet raised the concept of wavelet transform and established the inversion formula through the 
experience of physical intuition and signal processing and in 1986, the famous mathematician, Y. Meyer, created a real small wave base. From 
then on, Wavelet transform is a rapidly developing new subfield in mathematics and is used in more and more fields, such as signal analysis, 
image processing, quantum mechanics and theoretical physics etc. Multiresolution analysis is a systematic method for constructing 
orthonormal wavelet bases and most of the current dilation is M=2 With the development of wavelet transform, M>2 -band wavelet is known 
to have advantages over 2-band wavelet in some aspects such as in signal processing. However, there are relatively less results for the case of 
M>2. Based on this fact and inspired by other similar papers, this paper studies the 3-band wavelets and wavelet frames associated with a 
given refinable function based on frame multiresolution analysis. In this paper, firstly, a sufficient and necessary condition which the refinable 
function should satisfy for the existence of wavelet frames is showed. Further, an explicit algorithm to construct this frames is worked out and 
finally, several designed examples are constructed to illustrate this algorithm. 

Keywords: Frame Multiresolution Analysis, Polyphase Decomposition, Unitary Matrix Extension 

 

1. Introduction 

In 1974, an French engineer, J. Morlet, who was engaged in 

oil signal processing, raised the concept of wavelet transform 

and established the inversion formula through the experience 

of physical intuition and signal processing, which was not 

recognized by mathematicians at that time. Fortunately, in 

1986, the famous mathematician, Y. Meyer, created a real 

small wave base.  

Compared with Fourier transform and window Fourier 

transform, wavelet transform is a local transformation of time 

and frequency, so it can extract information from the signal 

effectively and carry out multi-scale refinement analysis of 

function or signal through the operation function of expansion 

and translation, and solve many difficult problems which can 

not be solved by Fourier transform, thus the wavelet transform 

is called the "mathematical microscope".  

With the development of wavelet transform, it is used in 

more and more fields, such as signal analysis, image 

processing, quantum mechanics and theoretical physics, 

intelligence of military electronic warfare and weapons, 

computer classification and recognition, artificial synthesis of 

music and language etc. It is well known that the 

multiresolution analysis (MRA for short) is a systematic 

method for constructing orthonormal wavelet bases [1, 2]. 

Based on MRA, in 1997 Ron and Shen worked out the unitary 

extension principle (UEP for short) [3], which is a momentous 

and convenient tool for the construction of wavelet frames. 

MRA requires that the translation of refinable function forms 

an orthonormal or a Riesz base in 0V which many refinable 

functions can't meet. In 1997 Benedetto and Li extended MRA 

to affine frames and formulated the notion of FMRA which 

just needs the translation of refinable function forms a frame 

in 0V [4]. Since then many wavelet frames with good 

properties such as symmetry and compact support in 

applications have been designed. On the other hand, the 

interest and effort has revolved around the dilation 2M =  

and there are relatively less results for the case of 2M > . In 

fact in multi-rate digital processing, decimation by an 2M >  

ratio has superiorities over 2M =  and some results have 

been applied to the scope of engineering
 
[5-11]. Considering 

the applications and motivated by the work of [12, 13], this 
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paper studied the 3-band wavelet frames based FMRA in this 

note. 

First introduce the notion of the frame multiresolution 

analysis (FMRA for short). Fix an integer 2M > , an FMRA 

is a family of nested subspaces 

Zjj }V{ ∈  of )R(L2  such that 

1) ;Zj},V{}V{ 1jj ∈⊂ +  

2) );R(LV},0{V 2
j

Zj
j

Zj

==
∈∈
∪∩  

3) jV)x(f ∈  if and only if 1jV)Mx(f +∈ ; 

4) There exists a function 0V)x( ∈ϕ  such that 

}Zn:)nx({ ∈−ϕ  forms a frame in 0V . 

The function )x(ϕ  is called a frame refinable function for 

the FMRA. In this paper )x(ϕ is assumed to be compactly 

supported. If replace “a frame” in the above definition by “an 

orthonormal or a Riesz base”, then the standard definition for 

MRA is obtained. 

From the definition of FMRA, it is easy to have  

.Zj},d:)kxM(d{V
Zn

2

n

Zn

j
nj ∈∞<−= ∑∑

∈∈

ϕ    (1) 

Let Zj,W j ∈  be the orthonormal complement of jV  in 

1jV + , then there exists an orthogonal decomposition of jW  

into 1Ms1,W js −≤≤ , i.e. 

)1M(j2j1jj WWWW −⊕⊕⊕= ⋯         (2) 

and some compactly supported functions 

1Ms1,W s0s −≤≤∈ψ  such that 

.Zj},d:)kxM(d{W
Zn

2

n

Zn

j
snjs ∈∞<−= ∑∑

∈∈

ψ   (3) 

Here, if )}kx({ s −ψ  is a Riesz base of s0W , 

1Ms1 −≤≤ , then the functions 1Ms1,s −≤≤ψ are called 

the −M band wavelets. On the other hand, if a finite family 

of functions 
1

N21 V},,{ ⊂= ψψψΨ ⋯  ( 1MN −≥  in 

general) is a frame of 1Ms1,W s0 −≤≤  and Ψ is called the 

−M band wavelet frames constructed from FMRA. 

FMRA is an important method to construct and character 

the wavelets. As noted previously, the case of 2M >
attracted more and more interest and a few relevant literatures 

appeared in succession [5-11, 14, 15]. However, most of the 

fruits dealt with the orthonormal wavelets instead of the 

wavelet frames. For wavelet frames, there are relatively less 

results [16-18]. The literatures [7, 14, 15] are about 

orthonormal wavelets with dilation 2M > . In 2007, Huang 

and Cheng presented a sufficient condition for an FMRA to 

form a tight wavelet frame and give an explicit constructing 

formula of wavelet tight frames by characteristic vectors [14]. 

Sun et al studied the construction of 3-band wavelet frames 

with symmetric properties by parameterizations of masks [17]. 

This paper, firstly gives a sufficient and necessary condition 

for the refinable function to generate a wavelet frames. And 

then, the mask matrix is rewrotten in polyphase 

decomposition and explicitly constructed a wavelet frame 

using UEP. This method is easily implemented in the computer. 

The last section is devoted to some examples to illustrate this 

algorithm. 

2. Preliminaries and Notations 

This sectio will give a complete characteristic of wavelet 

frames associated with a given refinable function )x(ϕ in 

terms of their masks.  

Let )R(L)x( 2∈ϕ with ϕϕ ˆ,Lˆ ∞∈ continuous at 0, and 

1)0(ˆ =ϕ be a frame refinable function. Since =⊂ 10 VV

}Zn:)nx3({Span ∈−ϕ , there is a sequence 2
Znn l}h{ ∈∈

such that 

∑
∈

−=
Zn

n )nx3(h)x( ϕϕ .              (4) 

Taking Fourier transform at both sides of (4) leads to 

.)(ˆeh)(ˆ

Zn

3

n

n3
1 3

i

∑
∈

−= ωω ϕωϕ             (5) 

Set ∑
∈

−=
Zn

ni
n3

1 eh)(H ωω , (5) is equivalent to 

).(ˆ)(H)(ˆ
33
ωω ϕωϕ =             (6) 

The π2 -periodic function )(H ω  is called the refinement 

mask. Similarly, consider the family 

1
N21 V},,{ ⊂= ψψψΨ ⋯ , there exist N  sequences 

2
N,2,1l

l
n l}g{ ∈= ⋯ such that 

∑
∈

−=
Zn

l
n

l )nx3(g)x( ϕψ             (7) 

and 

,)(ˆeg)(ˆ

Zn

3

nl
n3

1l 3
i

∑
∈

−= ωω ϕωψ           (8) 

here and throughout, .N,,2,1l ⋯=  

Thus there are N wavelet masks. )(H ω  and )(Gl ω  

formulate a )1N(3 +×  mask matrix )(M ω  as 



















++++

++++

)
3

4π(ω
N

G)
3

4π(ω
2

G)
3

4π(ω
1

G)
3

4πH(ω

)
3

2π(ω
N

G)
3

2π(ω
2

G)
3

2π(ω
1

G)
3

2πH(ω

(ωω
N

G(ωω
2

G(ωω
1

GH(ω(

⋯

⋯

⋯

 (9) 

Daubechies [2, p322] verified when 2N = , there exists an 

orthonormal wavelet base if and only if (9) is unitary, that is 
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3I)(M)(M =∗ ωω , for a.e. ω , where 

)(M ω∗
 

represents the complex conjugate of the transpose 

of )(M ω . Inspired by this, this paper hopes that the wavelet 

frames also will satisfy this unitary property. Huang 

Yongdong et.al proved that the unitary is a sufficient condition 

for the existence of a wavelet frame [14]. In the next part, this 

paper will state a sufficient and necessary condition that the 

refinable function )x(ϕ should meet to constitute a wavelet 

frame and if this condition is satisfied, there is an explicit 

algorithm to construct a tight wavelet frame. Here a note 

should be emphasized that the wavelet frame constructed by 

this algorithm only need three wavelet functions 

},,{ 321 ψψψΨ = . 

3. Examples 

This section gives a few examples of tight wavelet frames 

associated with the cardinal B-splines 2m),x(N m ≥  

defined inducting by 

∫ −= −

1

0
1mm dx)xt(N)x(N  

with )x(N1  denoting the characteristic function of the unit 

interval ]1,0[ (see [2, p188]). These Examples can be 

obtained by the Theorem which listed in the next section. It is 

well known that the cardinal B-splines play an important role 

in the development of wavelet theory. Fix the dilation factor 

3M = , the mask of )x(N m  is 

.
3

ee1

e33

e1
)(H

m
i2i

m

i

i3

m 








 ++=










−
−=

−−

−

− ωω

ω

ω
ω  

Since 

1)(H)(H)(H

)(H)(H)(H

2

3
41

2

3
21

2
1

2

3
4m

2

3
2m

2
m

=++++

≤++++

ππ

ππ

ωωω

ωωω
, 

by the above theorem, there exists a tight wavelet frame

},,{ 321 ψψψΨ = associated with )x(N m . 

Example 1 (Haar wavelet) When 1m = , the B-splines is 

known as Haar wavelet whose mask 

3

ee1
)(H

i2i
1

ωω
ω

−− ++= and the polyphase components are 

.
3

3
)(H)(H)(H 1

3
1
2

1
1 === ωωω  

This is the special case in which
2

1
2

2
1
1 )(H)(H ωω +

1)(H
2

1
3 =+ ω  and therefore .0)(H 1

4 =ω In fact, 

)(H 1 ω  generates an orthonormal wavelet base. The 

polyphase de composition matrix is 





















−
−
−−

+−

−+

1000

0

0

0

6

33

6

33

3

3

6

33

6

33

3

3

3

3

3

3

3

3

 

and the wavelet masks are 

.
ee)(G

ee)(G

6

33i2

6

33i

3

32

6

33i2

6

33i

3

31







+−−=

−+−=
+−−−

−−+−

ωω

ωω

ω
ω

 

Example 2 (Linear B-splines)  

When 2m = , 
2i2i

9
12 )ee1()(H ωωω −− ++=

 
and the 

polyphase components are 

)e2()(H),e21()(H
i3

9

32
2

i3

9

32
1

ωω ωω −− +=+=  

and 

.)(H
3

32
3 =ω  

There exists )e1()(H
i3

9

322
4

ωω −−=  such that 

.1)(H)(H)(H)(H
2

2
4

2
2
3

2
2
2

2
2
1 =+++ ωωωω  

For simplify, we set ue i3 =− ω , thus we have 


















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
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
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



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−

=


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
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


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9

32

3

3

9

32

9

3
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9

3

9

32

2
4

2
3

2
2

2
1

u
0

)(H

)(H

)(H

)(H

ω
ω
ω
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Applying the above algorithm, we obtain the unitary 

matrix extension as 























−−−−

−−

+

+

−−++++

+−+
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45

u)3421(38

9

u)33(32

15

u)31(32

9

32
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u)326(

6

u)33(
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u)33(

3

3
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u)346(34

9

u)33(3
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u)311(3

9

3

45

u)3224(38
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u)33(34
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u)313(34

9

3

)u1(

)u2(

)u21(

 

Thus the tight wavelet frame masks are 



















−

+=

+
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−

+=
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−+

−−++−

−

−−

−
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−
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e)326(

i
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9
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3
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Example 3 In the above example, if choose 

0t,2t,1t,0t 4321 ==== , then 

.))z1(,z),zz2(),z21((

))(Hz),(Hz),(Hz),(Hz(

T3

9

322

3

34

9

33

9

3

4
t

3
t

2
t

1
t 4321

−++=

∗ωωωω
 

The corresponding unitary matrix extension is 





















−+−
−−

−−+
−+

3
1

3

2

9
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9
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2

2

6

6

3

3

3
2

6

2
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9

3

3
2

3

2

9
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9

3

)1u2()z1(

0u
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and the tight wavelet frame masks are 

1 3 33 6 6
3 9 18

26
6

2 53 2 2 2
3 3 6 2

3 3 2 2
3 3 3

( ) ( (1 ) (4 1)

)

( ) ( )

( ) ( )

i i i

i

i i

i

G e e e

e

G e e

G e

ω ω ωω ω ωω ω ωω ω ω

ωωωω

ω ωω ωω ωω ω

ωωωω

ωωωω

ωωωω

ωωωω

− − −

−

− −

−

 = − + −


−
 = + −



= −



 

It is easy can see that 3ψ  is anti-symmetric. 

4. Conclusion 

This section state that if the refinable function )x(ϕ
satisfies some conditions, there exists a tight wavelet 

frame 1
N21 V},,,{ ⊂= ψψψΨ ⋯ associated with )x(ϕ by 

the following theorem. 

Theorem: Let )R(L)x( 2∈ϕ with ϕϕ ˆ,Lˆ ∞∈ continuous at 

0, and 1)0(ˆ =ϕ , be a compactly supported refinable 

function to generate an FMRA. Then there is a tight wavelet 

frame associated with )x(ϕ  if and only if 

..e.a,1)(H)(H)(H
2

3
4

2

3
22 ωωωω ππ ≤++++   (10) 

Further, if (10) is satisfied, there exists a compactly 

supported tight wavelet frame 1
321 V},,{ ⊂= ψψψΨ  

associated with )x(ϕ . 

Before proving this theorem, the correlation of the rows 

of (9) should be annihilated. To do so and for completeness, a 

description of the polyphase decomposition technique [2, 

p318]  should be included briefly as follows. 

Write )(G),(G),(H 21 ωωω and )(G3 ω in their 

polyphase forms respectively as 







++=

++=
−−

−−

))(Ge)(Ge)(G()(G

))(He)(He)(H()(H

3ji22ji1j

3

1j

3
i2

2
i

13

1

ωωωω
ωωωω

ωω

ωω

 (11) 

Here 3,2,1j = . Let 

















=
)(G)(G)(G)(H

)(G)(G)(G)(H

)(G)(G)(G)(H

)(N
332313

3

322212
2

312111
1

ωωωω
ωωωω
ωωωω

ω   (12) 

we have 

)(N

ee1

ee1

ee1

)(M
)(i2)(i

)(i2)(i

i2i

3

1

3
4

3
4

3
2

3
2

ωω
ππ

ππ

ωω

ωω

ωω

















=
+−+−

+−+−

−−

   (13) 

and 3I)(M)(M =∗ ωω  leads to 

..e.a,I)(N)(N 3 ωωω =∗        (14) 

Note )(H),(H),(H 321 ωωω  and )(G),(G 2j1j ωω , 

)(G 3j ω are all π2 -periodic. 

Proof of Theorem: The proof is a constructive process 

inspired by [10] and [11]. 

Let )(H),(H 21 ωω and )(H3 ω be the polyphase 

components of )(H ω .  

Since 1)(H)(H)(H
2

3
4

2

3
22 ≤++++ ππ ωωω

 
and 

+=++++ 2

1

2

3
4

2

3
22

)(H)(H)(H)(H ωωωω ππ

2

3

2

2 )(H)(H ωω + , we have 

2 2 2

1 2 3( ) ( ) ( ) 1.H H Hω ω ωω ω ωω ω ωω ω ω+ + ≤      (15) 

By Riesz Lemma [2, Lemma 6.1.3], there exists a 

polynomial )(H4 ω  which satisfies 

2 2 2 2

1 2 3 4( ) ( ) ( ) ( ) 1.H H H Hω ω ω ωω ω ω ωω ω ω ωω ω ω ω+ + + =    (16)
 

Next, multiply a diagonal matrix 

)e,e,e,e(diag 4321 titititi ωωωω −−−−         (17) 

to the left of 

∗))(H),(H),(H),(H( 4321 ωωωω       (18) 

where 321 t,t,t and 4t are so chosen that the matrix

∗−−−−
))(He),(He),(He),(He( 4

ti
3

ti
2

ti
1

ti 4321 ωωωω ωωωω
 

can be written as ∑
=

−
n

0j

ji)0(
j )e(

ωα with the vectors 

3)0(
j R∈α and .0,0 )0(

n
)0(

0 ≠≠ αα For convenience, set 

ze i =− ω
, that is 



 Applied and Computational Mathematics 2018; 7(3): 155-160 159 

 

31 2 4 (0)
1 2 3 4

0

( ( ), ( ), ( ), ( ))

n
tt t t j

j

j

z H z H z H z H zω ω ω ω αω ω ω ω αω ω ω ω αω ω ω ω α∗

=

=∑  (19) 

(16) leads to 

1)z()z(
n

0j

j)0(
j

n

0j

j)0(
j =⋅ ∑∑

==

∗
αα         (20) 

which means 0)0(
n

)0(
0

T

=⋅αα . Now apply the unitary 

matrix extension technique in [3]. Consider the 44 ×  

Householder matrix 

T

241 vv
v

2
IH −=              (21) 

here 1
)0(

n
)0(

n ev αα ±=  with the + and -are so chosen that 

0v ≠ . 1H  is orthonormal and 1
)0(

n
)0(

n1 eH αα ∓= , so 

0)HH()H()H( )0(
n1

T
1

T)0(
0

)0(
n1

T)0(
01 == αααα . This 

means the first component of 
)0(

01H α is 0. Therefore 

31 2 4

1

1 1 2 3 4

(1)

0

( ,1,1,1) ( ( ), ( ), ( ), ( ))

.

tt t tk

n

j
j

j

diag z H z H z H z H z H

z

ω ω ω ωω ω ω ωω ω ω ωω ω ω ω

αααα

− ∗

=

=∑
 (22) 

here k is so chosen that (22) is a polynomial vector with the 

lowest degree. Also, 
)1(

0α and 
)1(

n1
α  in (22) are not 0 and 

0)1(

n

T)1(
0

1
=αα . Repeat this procedure at most n times to get 

a polynomial matrix 

1
k

1s
k

s H)1,1,1,z(diagH)1,1,1,z(diagHH 1s −
−

− −= ⋯  

here, 1ns1 +≤≤ . Then  

,e))(Hz),(Hz),(Hz),(Hz(H 14
t

3
t

2
t

1
t 4321 ±=⋅ ∗ωωωω  

that is 

,e)1,1,1,1(diagH)z,z,z,z(diag

))(H),(H),(H),(H(

1
tttt

4321

4321 ±= ∗−−−−

∗ωωωω
 

or 

,e)1,1,1,1(diagH)z,z,z,z(diag

))(H),(H),(H),(H(

1
Ttttt

T
4321

4321 ±=

ωωωω
 

that means 
T

4321 ))(H)(H),(H),(H( ωωωω ，  is the first 

column of the unitary matrix 

)1,1,1,1(diagH)z,z,z,z(diag Ttttt 4321 ±        (23) 

Write 

.

)(G)(G)(G)(H

)(G)(G)(G)(H

)(G)(G)(G)(H

)(G)(G)(G)(H

)1,1,1,1(diagH)z,z,z,z(diag

342414
4

332313
3

322212
2

312111
1

Ttttt 4321





















=

±

ωωωω
ωωωω
ωωωω
ωωωω

    (24) 

By the unitary of (16), the corresponding tight wavelet 

frame masks can be obtained as 

1 2 2 31
( ) ( ( ) ( ) ( ))

3
1,2,3

j j i j i j
G G e G e G

j

ω ωω ωω ωω ωω ω ω ωω ω ω ωω ω ω ωω ω ω ω− −= + +

=
  (25) 

The proof of Theorem is complete. 

Remark 1: Theorem includes the case of orthonormal 

wavelet base in which the refinable mask )(H ω satisfies 

1)(H)(H)(H
2

3
4

2

3
22 =++++ ππ ωωω . Example 1 

explains this special case. 

Remark 2: In the above proof, if choose different 

4321 t,t,t,t  such that (22) can be written in another equation, 

then may obtain a different frame as Example 3. 
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