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Abstract: The Rice statistical distribution has recently become a subject of increasing scientific interest due to its wide 

applicability in various fields of science and technology, such as the magnetic-resonance visualization and ultrasound diagnostics 

in medicine, the radio and radar signals’ analysis and processing, the optical measurements, etc. The common feature of the tasks 

that are adequately described by the Rician statistical model consists in the fact that the value to be measured and analyzed is an 

amplitude, or an envelope of the output signal which is composed as a sum of the initially determined informative component and 

a random noise component being formed by many independent normally-distributed summands. The efficient reconstruction of 

the Rician signal’s informative component against the noise background is shown to be achieved only on the basis of joint 

determination of both a priori unknown Rician parameters. The Rice statistical distribution possesses some peculiarities that 

allow solving rather complicated tasks connected with the stochastic data processing. The paper considers the issues of the strict 

mathematical substantiations of the Rice distribution properties that are meaningful for its efficient application, namely: the 

Rician likelihood function features and the stable character of the Rice distribution. There are provided the rigorous proofs of the 

mentioned properties. 
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1. Introduction 

Modern science is characterized by dynamic development 

of new mathematical techniques that provide enhancing the 

efficiency of data analyzing and processing. As a rule the data 

being analyzed are of random, stochastic character. That’s 

why the techniques being used at solving the tasks of data 

analysis should take into account the peculiar features of the 

statistical distribution of the data to be analyzed. 

A recently increasing interest to the problem of the Rician 

signals analysis [1-5] is connected with a wide circle of 

scientific and technological tasks which are adequately 

described by the Rician statistical model. The common feature 

of these tasks consists in the following: the value to be 

analyzed is an amplitude, or an envelope of the output signal 

that is composed by a sum of initially determined signal and a 

random noise while the noise being formed by many 

independent normally-distributed summands with zero mean, 

[6]. Such a random variable is known to obey to the Rice 

statistical distribution. The range of the problems that are 

mathematically described by the Rice distribution includes the 

tasks of magnetic-resonance visualization [7, 8], the radio 

signals reception and processing, the tasks of the radar signals 

analysis [9], as well as the analysis of the sonar signals, the 

measurements of the optical medium’s properties by 

analyzing the reflected wave [10, 11], etc. 

Taking into account the physical meaning of the parameters 

of Rice statistical distribution one can conclude that the task of 

the useful, informative signal reconstruction against the noise 

background at Rician data analysis is equivalent to the task of 

the both Rician parameters estimation. 

The paper presents the theoretical study of the Rice 

statistical distribution’s peculiarities that allow efficient 

processing of Rician data by means of the so-called 

two-parameter analysis. Such an analysis provides the 

possibility of joint signal and noise calculation by measuring 

the sum signal. 
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2. Relation to Prior Art 

The Rice distribution was first formulated by Stephan Rice 

[1] as an extension of the Rayleigh distribution well known 

from the classical probability theory on the case of nonzero 

amplitude of the initial signal. The Rice statistical model [1] 

adequately describes the processes of various physical nature, 

when the noise is formed by summing a big number of 

normally-distributed components while the analyzed value is 

just an amplitude of the signal. 

A significant interest to solving a task of joint estimation of 

both parameters of the Rice distribution has appeared in 60-th 

years of the 20th century due to understanding that in 

conditions of Rice distribution only the knowledge of both 

Rician parameters allows efficient reconstructing the initial 

required signal against the noise background. In paper [2] the 

two-parameter task was considered applicably to radar signals’ 

analysis. However, this task solving has appeared to be 

conjugated with considerable difficulties of both the 

theoretical and the computational character. Later the 

simplified methods of the Rician data analysis have been 

elaborated in the conditions of the so-called one-parameter 

approximation consisting in estimating only one of the two 

unknown parameters – the signal value, in supposition that the 

second parameter – the noise dispersion – is known a priori, [3] 

and [4]. 

However, in practice the condition when the Gaussian noise 

dispersion is known a priori never takes place and such a 

supposition is a severe restriction of the one-parameter 

approach’s applicability. 

Therefore, the theoretical problem of joint estimation of 

both Rician parameters without any a priori conditions has 

remained unsolved for a few decades, since the 60-th years of 

the 20
th

 century. The strict mathematical grounds for the 

theory of the two-parameter approach to solving the task of 

Rician data analysis have been first provided in [5, 12-15]. 

The present paper is directed onto the detailed study of the 

Rice statistical distribution’s peculiarities and provides their 

mathematical substantiation. 

3. Theoretical Basics of the Rician Data 

Analysis 

The Rician distribution is known to describe an amplitude 

of the random variable, formed by summing an initially 

determined complex signal and the Gaussian noise distorting 

this signal.  

Let A be a determined value that characterizes the physical 

process to be considered. This value is inevitably distorted by 

the Gaussian noise created by a great number of independent 

noise components, while the measured and analyzed value is 

an amplitude, or the envelope of the resulting signal. The 

Gaussian noise distorting the initial determined signal is 

characterized by a zero mean value and a dispersion 2σ . 

Thus the task consists in the analysis of the signal’s amplitude 

2 2
Re Imx x x= + . 

The real Rex and imaginary Imx parts of the complex 

signal with amplitude x  are random Gaussian values with 

mathematical expectations Rex  and Imx , satisfying the 

condition 
2 2 2

Re Imx x A+ = , and dispersion 2σ . The 

random value x obeys the Rice distribution with parameters

Aν = andσ , [1]. Obviously, the value of x  belongs to the 

subset of the not-negative real numbers: (0, )x∈ ∞ . The ratio 

of the Rician parameters /SNR ν σ=  characterises the 

signal-to-noise ratio.  

So, the Rician random variable x  represents the amplitude 

of the signal with the Gaussian real and imaginary parts. The 

Rician probability density function is given by the following 

formula: 

( )
2 2

2
02 2 2

, exp ,
2

x x x
P x I

ν νν σ
σ σ σ

 +  = ⋅ − ⋅       
(1)   (1) 

where 0I  is the modified Bessel function of the first kind of 

order zero, [16]. Here and below the following denotations are 

used: ( )I zα  is the modified Bessel function of the first kind 

(or the Infeld function) of the order α ; ix  is the signal's 

value measured as the i -th element of a sample; n  is the 

quantity of elements in a sample, called also a sample’s length.  

The final purpose of the Rician data processing is evidently 

the evaluation of value A  that characterizes the process 

under the study and coincides with parameter ν of the Rice 

distribution.  

The Rician value’s mathematical expectation and 

dispersion are known to be expressed by the following 

formulas, [17]: 

( )2 2
1/2/ 2 / 2 ,x Lσ π ν σ= ⋅ ⋅ −           (2) 

( )
1/2

2 2 2 2 2 2 22 / 2 ,
2

x L
πσ σ ν σ ν σ= ⋅ + − ⋅ ⋅ −      (3) 

where function 1/2 ( )L z  is the Laguerre polynomial. 

As one can see the values x and 2
xσ do not coincide with 

the Rician parameters ν and 2σ , correspondingly. 

Nevertheless the both Rician parameters have a certain 

physical sense, namely: 2σ is s dispersion of the Gaussian 

noise distorting the initial signal, while parameter ν  

coincides with the value of the initially determined signal

Aν = .  

From the mathematical peculiarities of the Rician 

distribution noticed above it follows that the Rician signal’s 

mean value (2) and its dispersion (3) depend on the both 

Rician parameters: ν and 2σ . This means that the efficient 

reconstruction of the Rician signal against the noise 

background demands solving the task of joint evaluation of a 

priori unknown parameters ν  and 2σ .  

The solution of the formulated two-parameter task allows 

reconstructing the sought for values of the initial, not-noised 
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signal A , coinciding with parameter ν : A ν= . 

4. Parameters of the Rice Distribution: 

Physical Meaning and Peculiarities of 

Estimating 

The foregoing allows substantiating the choice of the Rice 

statistical model for the joint signal and noise estimation for 

solving the task in which the analyzed value is an amplitude 

and the noise obeys to the Gaussian statistics. The Gauss and 

the Rayleigh distributions can be considered as its special 

cases at the limits of very high and very low signal-to-noise 

ratio.  

By virtue of the specifics of the Rice distribution the 

analysis of the Rician data demands the development of 

special methods and the corresponding mathematical 

apparatus. It is well known that at the Gaussian data analysis a 

traditional and efficient filtration tool is the data averaging. 

However, in contrast to the case of the Gaussian distribution 

the average value of the Rician signal x  does not coincide 

with the value of the sought for useful signal ν . This is 

illustrated by Figure 1 where the average value of the 

Riciansignal x , depending upon the Rician parameters 

according to (2), is depicted by the curve line, while the value 

of the sought for useful signal ν  is depicted by the straight 

line outgoing from the origin of coordinates.  

The plots in Figure 1 correspond to the constant value of 

parameter σ : 1σ = , so that the points of the abscissa axes 

correspond to the value of signal-to-noise ratio /SNR ν σ= . 

Therefore, if one applies to the Rician data processing the 

traditional technique of the filtration by means of the data 

averaging, then within the range of small values of the 

signal-to-noise ratio the result will be just a leveling of the real 

signal values. So, the peculiarities of the Rician distribution 

are first of all determined by the fact that the average value of 

the Rician signal does not coincide with the initial, un-noised 

signal. Similarly, the dispersion of the Rician signal does not 

coincide with the dispersion of Gaussian noise that forms the 

Rician signal from the initially determined value. The Rician 

noise non-linearity is also a peculiar feature of the Rice 

statistical model. These properties are inherent to the Rice 

distribution and, in contrast to the Gaussian statistical model 

do not allow analyzing data just by simple averaging. Instead 

the indicated peculiarities of the Rician random variable 

predetermine the necessity of the development of special 

theoretical approach for the Rician data analysis and 

processing. 

 

Figure 1. Illustration of the non-coincidence of the Rician signal’s averaged value x  and Rician parameter ν  as dependent on the signal-to-noise ratio 

SNR. 

In a limiting case of very high signal-to-noise ratio the 

Rician signal’s dispersion coincides with the Gaussian noise 

dispersion:
2 2

/
.x ν σ

σ σ
→∞

→ , what is natural taking into account the 

interconnection of the Rician and the Gaussian distributions: 

at / 1≫ν σ  the Rician distribution is being transformed into 

the Gaussian distribution with the corresponding values of 

parameters ν  and σ .  

In the opposite limiting case / 1≪ν σ , when the value of 

the useful signal is much less than the noise value, one can get

2 2

/ 1
2

2≪
x ν σ

πσ σ  → ⋅ − 
 

, what coincides with the known formula 

for the random variable with the Rayleigh distribution, what is 

not unexpected as at / 1≪ν σ  the Rice distribution is being 

transformed into the Rayleigh distribution. 

Due to above indicated peculiarities of the Rice distribution 

the reconstruction of the initial, un-noised signal against the 

noise background is possible only by means of estimation of 

the both Rician parameters.  
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5. Substantiation of the Maximum 

Likelihood Technique Applicability for 

the Rician Data Analysis 

As mentioned above at the Rician data analysis the 

magnitude 2 2
Re Imx x x= + to be measured is the modulus of 

the complex value with the independent real Rex and 

imaginary Imx parts being distorted by the Gaussian noise. 

Let us consider a sample of n measurements of the signal’s 

amplitude x . The various types of the signal’s averaging are 

denoted by the angular brackets: 
1

1
n

k k
i

i

x x
n =

= ∑ , while the 

average value at infinite large sample’s length is denoted by 

the over-bar: 

1

1
lim

n
k k

i
n

i

x x
n→∞

=

= ∑  

The mathematical task of the Rician data two-parameter 

analysis consists in computing the two mentioned parameters 

ν  and 2σ  on the basis of the sampled measurements’ data. 

In the present paper the maximum likelihood technique is 

to be substantiated as an appropriate tool for solving this 

problem. This means the necessity to prove that the 

maximum likelihood solution exists and is a unique one.  

The likelihood function ( )2,L ν σ  is expressed as a product 

of the probability density functions for each measurement ix  

( 1,...,i n= ) in the sample: 

( ) ( )2 2

1

, , .

n

i

i

L P xν σ ν σ
=

= ∏             (4) 

where function ( )2,iP x ν σ  is defined by (1). At the known 

measured sampled data function (4) is the function of 

unknown statistical parameters ν and 2σ . The maximum 

likelihood method consists in calculating those values of 

parameters ν and 2σ , that maximize the likelihood function

( )2,L ν σ , or, what is equivalent, maximize its logarithm. 

Taking into account (1) and (4) results in the following: 

( ) ( )2 2

1

2 2
2

02 2
1

ln , ln ,

ln ln ln .
2

n

i

i

n
i i

i

i

L P x

x x
x I

ν σ ν σ

ν νσ
σ σ

=

=

= =

 +   − − +  ⋅    

∑

∑
       (5) 

The maximum likelihood equations’ system for calculating 

unknown parameters ν and 2σ can be obtained by 

differentiating the logarithmic likelihood function and setting 

equal to zero its partial derivatives by the both sought-for 

parameters. Having implemented the differentiation and some 

mathematical treatment one can get the following system of 

equations for the sought for parameters ν  and 2σ , [12, 13, 

15]:  

( )

2
1

2 2 2

2
1 1

1
0,

1
0.

2

ɶ

ɶ

n
i

i

i

n n
i

i i

i i

x
x I

n

x
x x I

n n

νν
σ

ννσ ν
σ

=

= =

  − ⋅ =  
 


  − + + ⋅ =  ⋅  

∑

∑ ∑
    (6) 

where ( ) ( ) ( )
( )

1
0

0

ln .ɶ
I zd

I z I z
dz I z

= =  

So the two-parameter task implies solving the system (6) of 

two essentially nonlinear equation with two unknown 

variables ν  and 2σ . The numerical solution of this system 

in its initial view is connected with the necessity of the 

optimization by two parameters simultaneously, what 

significantly complicates the computing algorithm elaboration 

and increases the volume of calculations.  

Obviously, the properties of the above introduced function 

( )ɶI z determine the existence of the maximum likelihood 

equation's solutions, their quantity and the peculiarities. The 

properties of this function have been studied in detail strictly 

proved. Here some of them are presented: 

1. Function ( )ɶI z satisfies to the following differential 

equation: ( ) ( ) ( )21
1 .ɶ ɶ ɶd

I z I z I z
dz z

= − ⋅ −  

2. Function ( )ɶI z  is monotonically increasing on the 

interval ( )0,+∞ . 

3. Function ( )ɶI z  is an upward-convex function.  

Taking into account these properties of function ( )ɶI z  

and having implemented some mathematical treatment allow 

to get the following simplified system (6):  

( )
2 2

1

2 2 2

21

,

1
.

2

ɶ
n

i
i

i

x
x I

n x

x

νν
ν

σ ν

=

  ⋅ ⋅  = ⋅
    −
  

 = ⋅ −


∑
          (7) 

It is important that the first equation of system (7) – the 

equation for ν  – is the one variable equation. Hence the task 

of solving the system of two nonlinear equations (6) for two 

variables ν  and σ  has been reduced to the task of solving 

just one equation (7) for only one variable ν .  

Let us consider now the issue on the existence and 

uniqueness of the solution of the maximum likelihood 

equations’ system (7) for the sough-for parameters ν and 
2σ .  

Theorem 

Solution of the maximum likelihood equations’ system (7) 
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for parameters ν  and σ  exists and is a unique.  

Proof 

From (7) it obviously follows that at existing the unique 

solution for ν  it is imperative that solution for the second 

parameter σ  also exists and is a unique. That’s why just the 

first equation of system (7) (equation for ν  ) is to be 

considered here. The left-hand side of this equation is depicted 

by a straight like ( )ly ν ν= , while the right-hand side is a 

linear combinations of the functions 1 0/ɶI I I= :  

( )
2 2

1

21
,ɶ

n
i

r i

i

x
y x I

n x

νν
ν=

 ⋅ ⋅ = ⋅
  −
 

∑           (8) 

while the argument of function ɶI  in each summand of the 

linear combination is a nonlinear function of ν .  

One can see that the value 
2 2( ) / 2x ν−  corresponds to 

the magnitude of the signal’s dispersion and consequently 

changes insignificantly as a function of parameter ν  because 

the dispersion is determined first of all by the physical nature 

of the noise.  

Let us consider the behavior of the argument of function ɶI  

in (8) in dependence of parameter ν . For this a denotation is 

introduced:  

( )
2 2

2
.

x
g

x

ν
ν

ν
=

−
               (9) 

Then the right-hand and the left-hand sides of the first 

equation of (7) can be presented as functions of a new variable

g . This variable can be shown to be a single valued function 

( )g ν of parameter ν in the interval of its physically 

meaningful positive values.  

Then the first equation of (7) can be re-written as follows: 

( )
1

1
,ɶ

n
i

i

i

x
g x I g

n x
ξ

=

 
=   

 
∑              (10) 

where the left-hand side is a magnitude of ν  as a reciprocal 

function of argument g : ( )( ).gν ξ ν=  

To analyze the properties of function ( )g ν  one can get 

from (9):  

( )
( )

2 2

2
2 2

2 0.
x

g x

x

ν
ν

ν

+
′ = ⋅ >

−
          (11) 

The positivity of derivative ( )g ν′ means the 

monotonically increasing character of function ( )g ν  and 

thus the unambiguity of function ( )g ν  and the reciprocal 

function ( )gν ξ= . Having proved the existence and the 

uniqueness of the non-zero solution of equation (10) for 

variable g  means thereby proving the existence and the 

uniqueness of the non-zero solution for parameter ν .  

Based on (9) one can obtain an analytical expression for the 

reciprocal function ( )( )gν ξ ν= , taking into account the 

positivity of the physically meaningful value of parameter ν : 

( ) ( )
2

2

2
.

x x
g g x

g g
ν ξ≡ = − + +         (12) 

Having analyzed the second derivative of function 

( )gν ξ=  it is not difficult to prove that this function is an 

upward-convex function.  

The existence and the uniqueness of the solution of 

equation (10) are obviously determined by the presence and 

the quantity of the points of intersection of the curves 

depicting the right-hand side and the left-hand side of (10).  

For the convenience of the further analysis let us denote the 

right-hand and the left-hand sides of equation (10) 

correspondingly: 

( )
1

1
,ɶ

n
i

r i

i

x
g x I g

n x
ψ

=

 
=   

 
∑            (13) 

( ) ( ).l g gψ ξ=                  (14) 

The right-hand side ( )r gψ  of equation (10), as mentioned 

above, is a liner combination of monotonically increasing and 

upward-convex function ɶ
ix

I g
x

 
  
 

 and consequently also is a 

monotonically increasing and upward-convex function that in 

virtue of the properties of function ɶI  asymptotically 

approaches to value 
1

1
n

r i

i

x x
n

ν
=

= = ∑ .  

The left-hand side of equation (10) also presents a 

monotonous and upward-convex function ( )l gψ ,), that is 

analytically defined by formula (12) and asymptotically 

approaches to value 2
l xν = .  

Thus the both sides of equation (10) are monotonically 

increasing convex function outgoing from the origin of 

coordinates. These functions asymptotically approach to 

horizontal lines rv v=  and lv v=  correspondingly. For any 

stochastic process the condition ( )22x x>  always takes 

place. This condition means that the asymptotic value rν  of 

the right-hand side ( )r gψ  of equation (10) is less that the 

asymptotic value lν  of its left-hand side ( )l gψ .  

So, the right-hand and the left-hand sides of equation (10) 

are depicted by the upward-convex curves outgoing from the 

origin of coordinates and having different asymptotes. It is 

obvious that these two monotonically increasing convex 
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curves may intersect only in the case if in the vicinity of zero 

point 0g →  the derivative of the equation’s right-hand side 

( )rd g

dg

ψ
 exceeds the derivative of its left-hand side 

( )ld g

dg

ψ
.  

Having conducted the non-complicated transformations 

with account of above formulas one can obtain 

( ) 2
2

20
lim 1 3 .

2

l

g

xd g

dg x x

ψ ν
→

    = ⋅ − ⋅    ⋅     

      (15) 

Similarly for the derivative of the right-hand side of (10) in 

the vicinity of zero point one can obtain 

( )

( )
2 4

2

30 2

3
lim 1 .

2 2

r

g

x xd g

dg x
x

ψ
ν

→

 
   

= −     ⋅   
 

     (16) 

Expressions (15) and (16) are written with the accuracy of 

the series expansion terms of order 
2ν . Calculating the 

difference of magnitudes (15) and (16) results in 

( ) ( )

( )

0

2 4
2

22
2

lim

3
1 .

2
2

r l

g

d g d g

dg dg

x x

x x x

ψ ψ

ν

→

  − = 
  

 
 

= ⋅ − 
 
 

            (17) 

Thus, the presence of the point of corresponding lines 

intersection, i.e. the existence of the solution of (10), depends 

upon the sign of the following magnitude: 

( )
4

2
2

1 ,

2

x

x

β = −
⋅

               (18) 

where 
4 4

1

1
n

i

i

x x
n =

= ∑ , 
2 2

1

1
n

i

i

x x
n =

= ∑ .  

Taking into account the known formulas for the moments of 

the Rician variable, [17], leads to the following expression: 

( )
4 2 2 4

4 2 2 4

8 8
lim 1 0.

2 4 4n

σ σ ν νβ
σ σ ν ν→∞

+ += − >
⋅ + +

       (19) 

This means that with the growth sample length n there exists 

such a sample length at exceeding of which condition 0β >
always takes place. This means the inevitable intersection of the 

curves ( )l gψ and ( )r gψ . The considered curves’ intersection 

point, in virtue of the above substantiated smoothness, 

monotonous character and upward-convexity of both curves 

and with account of their radii of curvature, may be only a 

single one, i.e. the non-zero solution of equation (10) and exists 

and is a unique. The proved existence and uniqueness of the 

solution for parameter ν obviously means the existence and the 

uniqueness of the solution for the second parameter σ .  

Thus, the solution of equations’ system (7) exists and is a 

unique. The theorem is proved.  

The solution of the equations system (7), obtained by 

setting the derivative of the likelihood function equal to zero, 

defines the extremum point of the likelihood function that may 

correspond to both the maximum and the minimum. To 

determine the character of extremum the sign of the second 

derivative of the logarithmic likelihood function 

( )
2

2

2
ln ,L ν σ

ν
∂

∂
 has been investigated. As its rather lengthy 

mathematical analysis cannot be presented within the 

frameworks of the present paper, just the resultant conclusion 

is provided here: at the presence of a non-trivial solution 

0ν ≠  the second derivative of the logarithmic likelihood 

function is positive at 0ν → . This means that at existence of 

the non-trivial solution of system (7) for parameter ν  the 

trivial solution 0ν =  corresponds to just a minimum, not a 

maximum of the likelihood function. By the other words the 

trivial solution in this case is not a sought for solution of the 

maximum likelihood method. So, just the non-trivial solution 

0ν ≠  of the equations system (7) always corresponds to the 

likelihood function’s maximum. 

The situation, when the useful signal is absent ( 0ν = ), 

corresponds to the Rayleigh distribution as a particular case of 

the Rice distribution, and in this case the only solution of the 

equation for parameter ν  of system (7) is a trivial solution 

0ν = . With account of the series expansion of function ( )ɶI z  

at small values of the argument, one can get the following 

expression for the second derivative of the logarithmic 

likelihood function ( )2ln ,RL ν σ for the Rayleigh distribution: 

( )
4

2
2 2

2 2
2

3
ln , 0.

8
R

x
L

x

ν σ ν
ν
∂ = − ⋅ ⋅ <

∂
      (20) 

The negative value of the second derivative (20) means that 

the single extremum of the likelihood function, corresponding 

to the trivial solution 0ν =  is a maximum of this function. 

6. The Stable Character of the Rice 

Statistical Distribution 

If a sum of two independent random variables obeying to 

the same distribution (probably, of different parameters) also 

obeys to the same distribution then such a distribution is said 

to be a stable one. This section considers the issue of the Rice 

distribution’s stable character. To prove it let us present the 

Rician signal as a sum of the determined signal and the 

Gaussian noise, as illustrated by Figure 2. 

Taking into account that the noise amplitude r obeys to the 

Rayleigh distribution while the noise phase ψ is distributed 

uniformly in interval (0, 2 )π , one can obtain for the joint 
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probability density function ( ),Ru R ϕ for the resulting 

vector’s amplitude R  and phase ϕ the following formula: 

( )
( )2 2

0

2 2

,

2 cos
exp

2 2

Ru R dRd

R A RA RdRd

ϕ ϕ

ϕ ϕ ϕ
σ πσ

=

 + − − − 
  

    (21) 

To prove the stable character of the Rice distribution let us 

consider a distribution of a signal having been formed by 

summing of two Rician signals. In practice usually the situation 

takes place when the signals being summed are characterized 

by an amplitude and a phase. So, these signals are represented 

as vectors while the case of the scalar adding is just a particular 

case of the equal phases of the signals to be added. 

 

Figure 2. Illustration of formingthe Ricisn signal 
��

R R=  as a result of the 

impact of Gaussian noise 
�
r  onto the initially determined signal of amplitude 

A . 

Let vectors 1

�
R  and 2

�
R  denote two initial signals with the 

amplitudes 1R  and 2R  obeying to the Rice distribution with 

parameters 1 1,A σ , and 2 2,A σ , correspondingly. Let 1β  

and 2β  be the phases of the corresponding noise components 

of two signals to be added. So, phases 1β  and 2β  are 

uniformly distributed in interval (0, 2 )π . This is illustrated 

by Figure 3. 

The components of the sum vector 1 2

� � �
R R R= +  are as 

follows: 

( )

( )

1 1 2 2

1 10 1 1 2 10 2 2

1 1 2 2

1 10 1 1 2 10 2 2

cos cos

cos cos cos cos ,

sin sin

sin sin sin sin .

x

y

R R R

A r A r

R R R

A r A r

ϕ ϕ
ϕ β ϕ ϕ β

ϕ ϕ

ϕ β ϕ ϕ β

= + =

+ + + ∆ +

= + =

+ + + ∆ +

  (22)  

where 10ϕ  and 20 10ϕ ϕ ϕ= + ∆  - the phases of vectors 1

�
R  

and 2

�
R , correspondingly. 

 

Figure 3. Illustrationto the proof of the Rice distribution’s stable character. 

The normal distribution is known to possess a quality of 

unlimited decomposability what means that any normally 

distributed random variable can be presented as a sum of an 

arbitrary number of normal random variables. Due to this fact 

it is not difficult to see that amplitude R  of signal 

1 2

� � �
R R R= +  obeys to the Rice distribution (as well as 

amplitudes 1R and 2R ), because the components of its noise 

vector 1 2

� � �
r r r= +  are the normally distributed random 

variables. The next task being solved below consists in the 

determination of the Rician parameters for amplitude R  of 

the resultant vector 1 2

� � �
R R R= + . 

The components xR and yR can be presented as follows:  

0

0

cos

sin

x x

y y

R R r

R R r

β
β

= +
 = +

               (23) 

where 

( )
( )

0 1 10 2 10

0 1 10 2 10

cos cos

sin sin

x

y

R A A

R A A

ϕ ϕ ϕ

ϕ ϕ ϕ

= + + ∆

= + + ∆
        (24) 

On the other hand one can obviously put down xR and 

yR through amplitude R and phase ϕ of the resulting vector
�
R : 

cos

sin

x

y

R R

R R

ϕ
ϕ

=
=                 (25) 

From (23) – (25) it follows: 

( )

( )

1 10 2 10

1 10 2 10

cos cos

cos cos

sin sin

sin sin

r R

A A

r R

A A

β ϕ
ϕ ϕ ϕ

β ϕ
ϕ ϕ ϕ

= −

 − + + ∆ 

= −

 − + + ∆ 

        (26)  

The values in the square brackets are the predetermined, 

not random ones. 
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Taking into account the Rayleigh distribution of amplitude 

r of the noise vector 
�
r  and the uniform distribution of its 

phase β  one can get:  

2 2/2

2

r

r

e
u dr rdr

σ

σ

−
=              (27) 

where 
2 2 2

1 2σ σ σ= + . Then, from (26) as a result of 

non-complicated mathematical transformation it follows:  

( ) ( )

2 2 2 2
1 2 1 2

1 10 2 20

2 cos

2 cos cos

r R A A A A

R A A

ϕ

ϕ ϕ ϕ ϕ

= + + + ∆ −

 − − + − 
     (28) 

Taking (28) into account and having conducted some 

mathematical treatment one can put down the joint 

probability density function ( ),Ru R ϕ
 
foramplitude R and 

phase ϕ of the summand signal as follows: 

( )
( )2 2

0 0

2 2

,

2 cos
exp

2 2

ɶ
Ru R dRd

R A RA RdRd

ϕ ϕ

ϕ δ ϕ
σ πσ

=

 + − − = − 
  

    (29) 

where 

( )
( )

2 2
0 1 2 1 2

2 1
0

2 1

2 cos

2

A A A A A

A A
arctg tg

A A

ϕ

ϕδ ϕ

= + + ∆

 − ∆= +  
+  

        (30) 

In (30) 0A  is the amplitude of resulting signal as 

calculated at the absence of a noise, and δ - an angle value 

corresponding to the un-noised resulting signal. 

Comparing (21) and (39) provides a strict proof of the fact 

that the sum signal obeys to the same distribution for its 

amplitude and phase as a distribution of each of the summand 

signals.  

Integrating (29) by phase variable ϕ  allows getting the 

following expression for the probability density function for 

the resultant signal’s amplitude R : 

( ) ( )2 2 2
0 /20

0 2 2

R A

R

RA RdR
R dR I e

σ
ω

σ σ
− + =  

 
      (31) 

This means that the amplitude of the resultant signal obeys 

to the Rice distribution with parameters 0A  and 

2 2 2
1 2σ σ σ= + . 

So, the stable character of the Rice statistical distribution is 

strictly proved.  

7. Conclusion 

The paper provides a detailed theoretical study of the 

peculiarities inherent to the Rice statistical model. The 

efficient reconstruction of the Rician signal against the noise 

background is shown to be achieved only on the basis of joint 

determination of both a priori unknown Rician parameters. 

The Rice distribution properties, such as the Rician likelihood 

function features and the stable character of the Rice 

distribution, are mathematically investigated. The uniqueness 

of the likelihood function maximum is strictly proved, what 

substantiates the applicability of the maximum likelihood 

technique for the Rican data analysis. Besides, the Rice 

distribution is shown to be a stable one, what makes it possible 

to apply the Rice model in many tasks when the signal being 

analyzed is formed as a sum of the Rician signals. The 

investigated features of the Rice statistical distribution allow 

efficient solving the task of calculation of the both Rician 

parameters which is of special importance at data processing 

as it is directly connected with solving the problem of the 

separation of the informative and the noise components of the 

analyzed data.  
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