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Abstract: We formulated three compartmental model of Marek Disease model. We first determined the basic 

Reproduction number and the existence of Steady (Equilibrium) states (disease-free and endemic). Conditions for the local 

stability of the disease-free and endemic steady states were determined. Further, the Global stability of the disease-free 

equilibrium (DFE) and endemic equilibrium were proved using Lyponav method. We went further to carry out the 

sensitivity analysis or parametric dependence on R0 and later formulated the optimal control problem. We finally looked at 

numerical Results on poultry productivity in the presence of Marek disease and we drew five graphs to demonstrate this. 

The first figure shows the effect of both vaccination (v) and biosecurity measures (u) on the latently infected birds. The 

population of infected birds increases speedily and then remains stable without the application of any control measure, with 

the controls, the population increases to about 145 and then begins to reduce from day 8 till it drops to 50 on day 20 and 

then remains stable. With this strategy, only bird vaccination (v) is applied to control the system while the other control is 

set to zero. In the second figure, the effect of bird vaccination and its’ positive impact is revealed, though there is an 

increase to about 160 before a decrease occurs. From the third figure, as the control (u) ranges from 0.2 to 0.9, we see that 

the bird population still has a high level of latently infected birds. This result from figure shows that the bird population is 

not free from the disease, hence, the biosecurity control strategy is not effective without vaccination of susceptible birds and 

hence it is not preferable as the only control measure for marek disease. The numerical result in the fourth figure shows that 

as the latently infected bird population increases without control, with vaccination it decreases as more susceptible birds are 

vaccinated. From the fifth figure we observe, that as the control parameter increases, the total deaths by infection reduces, 

also as the age of the infection increases to the maximum age of infection which is 6 months (thatis, T=24 weeks), the 

number of deaths increases to 30 in a day. Hence, control measures should be applied at the early ages of infection in order 

to avoid high mortality rate during the outbreak of the disease. 

Keywords: Age-Infection Model, Marek Disease, Biosecurity Control Strategy, Vaccination,  

Compartmental Model of Marek Disease 

 

1. Introduction 

Marek's disease is a viral infection that only affects poultry 

caused by alphaherpesvirus known as 'Marek's disease virus' 

(MDV) or Gallid herpesvirus 2 (GaHV-2). It is a disease that 

affects mostly young chickens but older birds can also be 

affected, [4]. Birds infected with GaHV-2 can be carriers and 

shedders of the virus for life. Newborn chicks are protected 

by maternal antibodies for a few weeks. After infection, 

microscopic lesions are present after one to two weeks, and 

gross lesions are present after three to four weeks. The virus 

is spread in dander from feather follicles and transmitted by 

inhalation, [7]. It lives in the environment for long periods, 

and can spread between properties on people's clothes and on 

shared equipment. Birds are usually infected at a young age 

from two to five months old, but may not show signs of 

disease until some months later. 

Marek's disease is a highly contagious viral neoplastic 
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disease in chickens. It is named after József Marek, a 

Hungarian veterinarian and often occasionally misdiagnosed 

as tissue pathology. It is caused by an alphaherpes virus 

known as Marek's disease virus' (MDV) or 

Gallidherpesvirus2 (GaHV-2). The disease is characterized 

by the presence of Tcelllymphoma as well as infiltration of 

nerves and organs by lymphocytes, [7]. 

The vaccine was introduced in 1970 and the scientist 

credited with its development is Dr. Ben Roy Burmester. 

Before that, Marek's disease caused substantial revenue loss 

in the poultry industries of the United States and the United 

Kingdom. Diagnosis of lymphoid tumors in poultry is 

complicated due to multiple etiological agents capable of 

causing very similar tumors. It is not uncommon that more 

than one avian tumor virus can be present in a chicken, thus 

one must consider both the diagnosis of the disease/tumors 

(pathological diagnosis) and of the virus (etiological 

diagnosis). A step-wise process has been proposed for 

diagnosis of Marek’s disease which includes (1) history, 

epidemiology, clinical observations and grossnecropsy, (2) 

characteristics of the tumor cell, and (3) virological 

characteristics, [31]. 

To understand the mechanisms of this virulence evolution 

and to evaluate the epidemiological consequences of putative 

control strategies, it is imperative to understand how 

virulence is defined and how this correlates with host 

mortality and infectiousness during MDV infection. It was 

considered in [15] a mathematical approach to quantify key 

epidemiological parameters. Host life span, virus latent 

periods and host viral sheddin grates were estimated for 

unvaccinated and vaccinated birds, infected with one of three 

MDV strains. The strains had previously been pathotyped to 

assign virulencescores according to pathogenicity of strains 

in hosts. The analyses show that strains of higher virulence 

have a higher viral shedding rate, and more rapidly kill hosts. 

Vaccination enhances host life expectancy but does not 

significantly reduce the shedding rate of the virus. While the 

primary latent period of the virus does not vary with 

challenge strainn or vaccine treatment of host, the time until 

the maximum viral shedding rate is increased with 

vaccination. In [2], it was formulated a mathematical model 

to predict the effectiveness of vaccines to reduce the outbreak 

probability and disease burden with in a barn. They found 

that the chance of an outbreak with in a barn increases with 

the virulence of an MDV strain, and is significantly reduced 

when the flock is vaccinated, especially when there is a the 

contaminant strainis of low virulence. With low quantities of 

contaminated dust, there is nearly a 100% effectiveness of 

vaccines to reduce MDV out breaks. However, the vaccine 

effectiveness drops to zero with an increased amount of 

contamination with a middle virulence MDV strain. It was 

predicted that the larger the barn, and the more virulent the 

MDV strain is, the more virus is produced by the time the 

flock is slaughtered. With the low-to-moderate virulence of 

the strains studied here, the number of deaths due to MDV 

was very low compared to all-cause mortality regardless of 

the vaccination status of the birds. However, the cumulative 

MDV incidence can reach 100% for unvaccinated cohorts 

and 35% for vaccinated cohorts. The results suggest that 

death due to MDV is an insufficient metric to assess the 

prevalence of MDV broiler barns regardless of vaccine 

status, such that actives urveillance is required to 

successfully assess the probability of MDV out breaks, and to 

limit transmission of MDV between successive cohorts of 

broiler chickens. 

In her work [5] investigates how modern broiler farm 

practices can maked is ease eliminationd if ficultorim 

possible to achieve using an implusive differential equation. 

The study also investigated factors that may contribute to 

virulence evolution. The model suggests that by decreasing 

the cohort duration or by decreasing the flock density, 

Marek's disease can be eliminated from a barn with no 

increase in cleaning effort. The model also suggests that the 

sepractices will lead to disease evolution towards greater 

virulence. Additionally, it suggests that if intensive cleaning 

between cohorts does not rid the barn of disease, it may drive 

evolution and cause the disease to become more virulent. 

It was developed in [19] a genetic–epidemiological model for 

Marek disease infection in poultry and assess the impact of 

genetic and vaccination strategies on over all MDV dynamics. A 

compartmental model considering susceptible, exposed, 

cytolyticphase1, latent cytoliticphase 2, proliferatives phases of 

MDV infection was developed and simulated stochastically in a 

population of 10,000 birds for 500 days. The 

Result showed that the basic reproductive ratio and percent 

of the population infected in a MDV epidemic were 5.8 and 

0% and 0.6 and 20% for unvaccinated and vaccinated cases 

respectively. The model outcome correctly identify that 

whilst the proportion of infected individuals in a genetically 

resistant population may be high, the incidence of disease wil 

lstill be rare, since infection may rare cause obvious clinical 

cases of disease. It is important to note that in the studies 

mentioned above, as well as in most other treatment 

scheduling studies, the age structure of the infection of the 

disease was not taken into consideration. In an attempt to 

give a more substantial control strategy of the disease, an 

age-structure model on the disease transmission is being 

considered in this study. A paper by [22] investigates the 

effectiveness and cost-effectiveness of leptospirosis control 

measures, preventive vaccination and treatment of infective 

humans that may curtail the disease transmission. For this, a 

mathematical model for the transmission dynamics of the 

disease that includes preventive, vaccination, treatment of 

infective vectors and humans control measures was 

considered. Firstly, the constant control parameters’ case was 

analyzed, the basic reproduction number was calculated and 

the existence and stability of equilibria was investigated. The 

threshold condition for disease-free equilibrium was found to 

be locally asymptotically stable and can only be achieved 

when the basic reproduction number is less than unity. The 

model was found to exhibit the existence of multiple endemic 

equilibria. Other works looked at include the following: [6, 

14, 16-18, 20, 21 and 23]. Other papers consolted and used 

include: [1, 3, 7-13, 24-30 and 31]. 
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2. Method 

2.1. Assumptions of the Model 

1. Age–dependent birth rates does not dependon disease 

status 

2. Allnewbornsareinthesusceptibleclass(ieallyoungbirdsare

thesusceptibleclass) 

3. There is intercohort mixing (i.e. infection can be 

transmitted between birds of different ages) 

Table 1. Parameters of the Model. 

S(a, t) susceptible of age a at time t 

I(a, t) infectives of age a at time t 

C(a, t) carriers of age a at time t 

�(a, t) Infection rate 

�(a) removal rate in each class 

d(a) natural death rate in each class 

�(a) Age-based, disease-induced death rate 

Λ(a, t) Recruitment rate of birds of age a at time t 

2.2. Model Flow Chart 

 
Figure 1. Flow Diagram for Marek Disease. 

2.3. Equations of the Model 
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a t S a t d a I a t a I a t a I a t
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a I a t d a C a t a C a t

t a

Initial condition

S a S a I a I a R a R a

N a t S

λ

λ µ δ

δ µ

∂ ∂+ = Λ − −
∂ ∂
∂ ∂+ = − − −
∂ ∂
∂ ∂+ = − −
∂ ∂

= = =
= , ) ( , ) ( , )a t I a t C a t














+ + 

   (1) 

3. Results 

3.1. Existence of Steady State for the Marek Disease Model 

In corporating the new births from each class, the model 

equation becomes 

( )
[ ( ) ( ) ( )] ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ,

( , ) ( , )
( ( )) ( , ) 0,

dS t
S t L t I t S t I t S t

dt

dL t
S t I t L t

dt

i t i t
i t with initial

t

α µ

α γ α

τ τ µ δ τ τ
τ

= Λ + + − − 

= − + 


∂ ∂ + + + = ∂ ∂ 

    (2) 

( )( ) k TWith e τδ τ δ − −=                         (3) 

0

( ) ( , ) , 0

T

I t i t d Tτ τ τ= ≤ ≤∫                     (4) 

With initial condition, 

( ,0) ( ) ( ) ( )i t B t L t I tγ= = − Ω                     (5) 

At the equilibrium states, let 

( ) , ( ) , ( ) , ( , ) ( )S t x L t y I t z i t τ ϕ τ= = = =                (6) 

So that, 

0

( ) (0) ( )

T

z d and B t y zϕ τ τ ϕ γ= = − Ω∫                  (7) 

Substituting (4) and (5) into the RHS of (1) at equilibrium 

states gives 

( ) 0x y z xz xα µΛ + + − − =                         (8) 

( ) 0xz yα γ µ− + =                                (9) 

( )
( ) ( ) 0h

ϕ τ τ ϕ τ
τ

∂ + =
∂

                            (10) 

where  

( )( ) ( ) k Th e ττ µ δ τ µ δ −= + = +                        (11) 

Solving (10) gives 

0

( ) (0)exp ( )h s

τ

ϕ τ ϕ
  = − 
  
∫                         (12) 

Let	���� 	 exp	
�� ��������
�                       (13) 

So that (12) becomes 

����=��0�����                                (14) 

Putting (14) in (8) gives 

z=� ��0��������
� =��0�
� ������ � � ��������

� 	 ��0� � �������
�

�
�  

z=��0���, where �� 	 � ������	�
�                   (15) 

Using (7) in (14) gives 

� 	 � γ y � Ωz �	                               (16) 

Solving (7), (8) and (16) simultaneously for (x, y, z) gives 
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the steady states for the Marek model, 

That is, 

Λ (x+y+z)- α xz- µ x=0                               (17) 

α xz–( γ + µ ) y=0                               (18) 

� � � γ y −Ωz)��=0                               (19) 

From (19),	� = !"#$%&'#$	                         (20) 

Thus, substituting (18) in (17) gives 

( = ( γ &µ )(%&'#$)
α γ #$ 	                   (21) 

Substituting (20) and (21) in (17), gives, 

) = (*&+)(,&+)(%&'#$)-.!#$[(%&'#$)(!&0&*)&*!#$]	                    (22) 

Substituting (22) in (20) gives 

� = (*&+)(,&+)(%&'#$).[(%&'#$)(!&0&*)&*!#$]	                            (23) 

Therefore the steady states are; 

( = ( γ &µ )(%&'#$)
α γ #$ , ) = (*&+)(,&+)(%&'#$)-.!#$[(%&'#$)(!&0&*)&*!#$], � = (*&+)(,&+)(%&'#$).[(%&'#$)(!&0&*)&*!#$] 

Setting y=z=0, we obtain the disease-free equilibrium 

(DFE) 

2� = ((, 0,0) 
 2�=(

( γ &µ )(%&'#$)
α γ #$ , 0,0) 

3.2. Local Stability of the DFE 

In this section we investigate the stability of the disease-

free equilibrium state. First we obtain the characteristic 

equation. Let the equilibrium states be perturbed as follows; 

Substituting (16) into the model equation (1) 

[ ] ( ) ( ) ( ) ( )( ) ( )t t t t t t t

t t t t t t t t

d
x pe x pe y qe z re x pe z re x pe

dt

x pe y qe z re xz xre zpe pre e x pe

λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

α µ

α α α α µ µ

+ = Λ + + Λ + + Λ + − + + − +

= Λ + Λ + Λ + Λ + Λ + Λ − − − − − −

456 
But from (6),	Λ(( + ) + �) − 7(� − �( = 0, so we have, 

�8̅456 = Λ8̅456 + Λ;�456+Λ<̅456 − 7(<̅456 − 7�8̅456 − �8̅456 
�8̅ = Λ8̅ + Λ;� + Λ<̅ − 7(<̅ − 7�8̅-�8̅ 

Collecting like terms 

0=(Λ-� − �)8̅ + Λ;� + (Λ − 7()<̅                                                                   (24) 

��= >) + ;�456? = 7@( + 8̅456A@� + <̅456A − (γ + μ)@) + ;�456A 
�;�456 = 7(� + 7(<̅456 + 7�8̅456 + 78̅456<̅456 − )(γ + μ) − (γ + μ);�456 

Taking cognizance of (24) and neglecting term of order 2, gives 

�;�456 = 7(<̅456 + 7�8̅456 − (γ + μ);�456 
�;� = 7(<̅ + 7�8̅ − (γ + μ);� 

Thus, 

0=7�8̅ − (γ + μ + �);� + 7(<̅                                                                       (25) 

Substituting (15) & (16) in (1), gives 

DD= >�(�) + E(�)456? + DD� >�(�) + E(�)456? + ℎ(�)@�(�) + E(�)456A = 0 

Taking cognisance of (16), we have, 
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�E(�)456 + DE(�)D� 456 + ℎ(�)E(�)456 = 0 

�E(�) + DE(�)D� + ℎ(�)E(�) = 0 

FG(�)F� + @� + ℎ(�)AE(�) = 0	                                                                        (26) 

Solving the ODE in (26), we have 

E(�) = E(0)4(8 − � @� + ℎ(�)A��	��                                                                   (27) 

Integrating (27) over [0, T], gives 

� E(�)�� =�� E(0) � 4(8�� {−� @� + ℎ(�)A��}�� ��	                                                         (28) 

Substituting (25) in (27) gives 

<̅ = � E(�)���� =E(0) � 4(8�� {−� @� + ℎ(�)A��}�� �� 

<̅ = E(0)H(�)	                                                                               (29) 

WithH(�) = E(0) � 4(8�� {−� @� + ℎ(�)A��}�� �� 

We now find	E(0)as follows; from (5), 

�(0) = I(=) = γ y − Ωz 
� �(0) = I(=) = γ@) + ;�456A − Ω@� + <̅456A	                                                       (30) 

From (17) 

J(=, �) = �(�) + E(�)456 
=>J(=, 0) = I(=) = �(0) + E(0)456 	                                                                (31) 

Substituting (5) in (25) gives, 

B(t)= γ y − Ωz + E(0)456 	                                                                      (32) 

Equating (28) and (32) gives 

γ@) + ;�456A − Ω@� + <̅456A = γ y − Ωz + E(0)456                                                      (33) 

γy + γ ;�456 − Ωz − Ω<̅456 − γ y + Ωz = E(0)456 
=>E(0) = γ;�-Ω<̅	                                                                                 (34) 

Substituting (30) in (25), gives 

<̅ = (γ;�-Ω<̅)H(�) 
� 0 =	γ;�H(�) − @1 + ΩH(�)A<̅	                                                                     (35) 

Thus we have the linearized system of equations from (17), (18) and (19) 

(Λ-� − �)8̅ + Λ;� + (Λ − 7()<̅=0 

7�8̅ − (γ + μ + �);� + 7(<̅=0                                                                         (36) 

γH(�);� − (1 + ΩH(�))<̅=0 

The coefficients of	8,��� ;�	&	<̅	in (36), give the Jacobian determinant 
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MΛ − � − 7� − � Λ Λ − 7(7� −(γ + μ + �) 7(0 γH(�) −(1 + ΩH(�))M = 0 

Therefore the character is tice quation for the model is given by, 

(Λ − � − �)[(γ + μ + �)@1 + ΩH(�)A − 7((γH(�))] + Λ7�(1 + ΩH(�)) + (7�γH(�))(Λ − 7()=0              (37) 

At the disease-free or non-zero equilibrium,  2�((, ), �),	let the characteristics equation (37) take the form 

( ) ( )[( )(1 ( ) ( ( ))] (1 ( )) ( )( ( ))( ) 0H z c ax c z c x z c xλ µ α λ γ µ λ λ γ λ α λ α α γ λ α= Λ − − − + + + Ω − + Λ + Ω + Λ − Λ − =  (38) 

If we set  

�		= J	N		                                (39) 

In (39) w4	 hO	P	4	 =	hO	=	,  
H(J	N	) = Q	(N	) + J	R	(N	)                         (40) 

From (28) 

c(�)=� exp	{−� (���� � + ℎ(�))��}��=� 4S5��(�)����  

Therefore 

c(iw)=� 4STU��(�)���� =� [HV�W� − J�JXW�]�(�)����  

c(iw)=f(w)+ig(w) 

and so  

f(w)=� �(�)HV�W����� andg(w)=−� �(�)�JXW�����  

f(0)=� �(�)���� =��, 

g(0)=0                                     (41) 

0)0( =′f   

πτττπτ −=−=′ ∫
T dg 0 )()0(  

Hence, 

H(iω) = (Λ − � − 7� − iω)>(γ + μ + iω)@1 + ΩH(iω)A − 7(@γH(iω)A? + Λ7�@1 + ΩH(iω)A + @7�γH(iω)A(Λ − 7() = 0	           (42) 

H(iω)=(Λ − � − 7� − iω)[(γ + μ + iω)(1 + Ω(f(w) + ig(w))) − 7((γf(w) + ig(w))] + Λ7�(1 + Ω(f(w) + ig(w))) +(7�γ(f(w) + ig(w))(Λ − 7() 
Therefore, 

F(w)=(Λ − � − 7�)(γ + μ) + (Λ − � − 7�)(γ + μ)Ωf(w)+Λ7�+Λ7�Ω(f(w)+Λ7�γ(f(w)+w
2-+

w
2Ωf(w)-Ωg(w)(Λ − � −7�)W+Ωg(w)	w(γ + μ) 

G(w)=w(Λ − � − 7�)-(γ + μ)W+(Λ − � − 7�)WΩf(w)-WΩf(w)(γ + μ)-(Λ − � − 7�)(γ + μ)Ωg(w)+Ωg(w) w2
 

Hence, 

)1)()(()0( πµµγ Ω+−Λ+=F  

0)0( =′F  

πτµγµπγµ ))(()1)(2()0( +−Λ−Ω+−−Λ=′G  

The condition for Re� < 0	is given by the inequality 

0)0()0()0()0( >′−′ GFGF                             (43) 

We now need to obtain the condition for which the 

inequality holds. That is, 

0sin,0)0()0( =′>′ FceGF  

)())(()1)()(()0( kF ϕµµγπµµγ −Λ+=Ω+−Λ+=  

)()0(0 kSgnS ϕ= Hence, F(0) > 0 if	(1 + Ω��) > 0 

Also G(0)=(Λ − 2� − γ)(1 + Ω��)–(Λ − �)(γ + μ)��	$>0 

Hence, if 0)( >kϕ  

The non-zero state will be stable, and if otherwise it will 

be unstable at least locally.∎ 

When b(c) >0 then the control parameter k must be 

correspondingly high, which leads to the instability of the zero 

state and the possible stability of the non-zero state, locally. A 

high level of k indicates longer life span for the infected birds. 

3.3. Local Stability of the Endemic (Zero) Equilibrium 

At the endemic equilibrium (zero)2� = (0,0,0)we assume 

that the disease causes high mortality rate that could wipe out 

the entire population of bird in the poultry, hence, the 

characteristic equation takes the form 

(Λ − � − �)>(γ + μ + �)@1 + ΩH(�)A? = 0	       (44) 

From (44) 

(Λ − � − �)(γ + µ + �) = 0                   (45) 

or 



171 Uwakwe Joy Ijeomaet al.: Age-Infection Model and Control of Marek Disease  

 

@1 + ΩH(�)A = 0	                           (46) 

Theorem1: The endemic equilibrium is stable when	 
Λ < �	and	b(c) < 0 

Proof: Equation (3.35) is a quadratic equation in �		 with 

negative roots, when 

Λ < � 

In order to investigate the nature of the root of (38) for the 

stability of the system, let (40) take the form 

h(�)=@1 + ΩH(�)A = 0	                        (47) 

If we set	� = JWin (36) we have that 

h(iw)=h1(w)+ih2(w) 

the condition for Re � < 0	 will then be given by the 

inequality 

h1(0) h2
I
(0)–h1

I
(0) h2 (0)>0                     (48) 

From (25), 

)()()( wigwfiwc +=
 

And so, 

f(w)=� �(�)HV�W����� andg(w)=−� �(�)�JXW�����  

f(0)=� �(�)���� =�� 

g(0)=0 

f
I
(0)=0 

g
I
(0)=−� � �(�)���� =-��� 

From (36) 

h(iw)=(γ + μ + JW)(1 + Ω(H(JW)) − 7(γ[c(iw)]=(γ + μ + JW)(1 + Ω(e(W) + Jf(W)) − 7(γ[f(w) + Jf(W)] 
Thus, if we set 7 = 0 (that is the neighborhood of	7 = 0)  

1

2

1

2

1

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(0) ( ) ( )

(0) 0

(0) ( )

(0) ( ( ))

h w f w w g w

h w g w w w f w

h

h

h w

h

γ µ γ µ
γ µ
γ µ γ µ π

τπ τπ
π τπ γ µ

= + + + Ω + Ω
= + Ω − − Ω

= + + + Ω
=

′ = − Ω + Ω
′ = − Ω + +

 

Since h2(0) = 0, 

Hence, the inequality gives 

[(γ + μ)(1 + Ω��)][Ω��+���(γ + μ)]<0 

Since [Ω��+���(γ + µ)]>0, then the inequality will hold if  

[(γ + μ)(1 + Ω��)] < 0 

But Sgn h1(0) = Sgnb(c) 
Therefore 

(γ + μ)(1 + Ω��) < 0	if	b(c) < 0 

Therefore the system will be stable if	Λ < � 	and	b(c) <0.∎ 

For	b(c)< 0, k must be very low, this gives the condition 

for the stability of the origin A low level of kindicates high 

rate of death among the infected, the high prevalence of the 

disease in the poultry, hence, the stability of the origin 

leading to a wiping out of the population. 

4. Discussion 

We have presented here on the graphs, the results of the 

study based on this model. Two control measures were 

considered; bird vaccination (v) and biosecurity measures 

(u). The infection death rates is also simulated based on the 

ages of infection, starting from 4weeks to the maximum age 

of infection T = 24 weeks. The following parameter values 

are used for the simulation: 

Table 2. Parameters and Values. 

Parameter Value Source 

α 0.1 Carly (2016) 

µ 0.2 Carly (2016) 

k 0.3 Carly (2016) 

γ  0.03 Carly (2016) 

Λ  40 Carly (2016) 

Ω  0.02 Carly (2016) 

 

Figure 2. Simulations howing the effect of vaccination and biosecurity  

measure son the latently infected Population.. 

Figure 2 shows the effect of both vaccination (v) and 

biosecurity measures (u) on the latently infected birds. The 

population of infected birds increases speedily and then 

remains stable without the application of any control 

measure, with the controls, the population increases to about 
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145 and then begins to reduces from day 8 till it drops to 50 

on day 20 and then remains stable. 

 

Figure 3. Simulation showing the effect of vaccination on the latently 

infected population. 

 

Figure 4. Simulation showing the effect of biosecurity measure on the 

latently infected population. 

 

Figure 5. Simulation showing the effect of vaccination on latently infected 

population. 

With this strategy, only bird vaccination (v) is applied to 

control the system while the other control is set to zero. In 

Figure 3, the effect of bird vaccination and its positive impact 

is revealed, though there is an increase to about 160 before a 

decrease occurs. 

From Figure 4, as the control (u) ranges from 0.2 to 0.9, 

we see that the bird population still has a high level of 

latently infected birds. This result from figure shows that the 

bird population is not free from the disease, hence, the 

biosecurity control strategy is not effective without 

vaccination of susceptible birds and hence it is not preferable 

as the only control measure for Marek disease. 

The numerical result in Figure 5, shows that as the latently 

infected bird population increases without control, with 

vaccination it decreases as more susceptible birds are vaccinated. 

 

Figure 6. A plot showing the total deaths by infection at different infection 

ages with 0 ≤ c ≤ 1.. 

From Figure 6, we observe, that as the control parameter 

increases, the total deaths by infection reduces, also as the 

age of th infection increases to the maximum age of 

infection which is 6 months (that is, T = 24 weeks), the 

number of deaths increases to30 in a day. Hence, control 

measures should be applied at the early ages of infection in 

order to avoid high mortality rate during the outbreak of the 

disease. 

5. Conclusion 

5.1. Summary 

In this paper, we considered the theoretical analysis of 

compartmental Marek disease in a poultry. The study is 

briefly summarised below: Firstly, stability analysis were 

carried out using the Lyaponuv function theory and Lasslle’s 

invariance principle for each of these disease models. 

Subsequently optimal control problems were formulated for 

the control models and was analysed using the pontryagin’s 

maximum principle. Sensitivity analysis was also carried out 

to find out how important each model parameters are to the 

disease transmissions. This was done using the normalized 
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forward-sensitivity index. 

Finally, the results of the study were presented using 

numerical simulations for each of the disease models, for 

which each intervention strategies were discussed and results 

established. 

5.2. Conclusion 

In the case of Marek disease, an infection–age structured 

model was formulated and analysed. The system was 

established to have a stable non–zero state (the state at which 

the disease will not wipe the entire bird population) 

whenb(c) > 0. This implies that at this stage, the control 

parameter will be high which indicates a longer life span for 

the infected birds. 

Furthermore, the system will have a zero equilibrium (the 

state at which the disease wipes the entire bird in the poultry) 

ifΛ < �	OX�	b(c) < 0	OX�	forb(c)< 0, k must be very low. 

A low level of k indicates high rate of death among the 

infected birds which implies the high prevalence of the 

disease in the poultry, hence, the stability of the origin 

leading to a wiping out of the population. 

5.3. Recommendations 

The work was motivated by the possibility that mathematical 

modelling could improve the understanding of the dynamics 

of these diseases, particularly the impact of infection on 

poultry productivity. Based on the analysis of this study, we 

can conclude that poultry productivity can still be achieved 

even in the presence of perverse disease outbreak, if 

appropriate control measures are applied. Hence, were 

commend that control programs that follow the strategies 

stated for each of the diseases in this study, can be used 

effectively to prevent and reduce the spread of these diseases, 

in order to enjoy high poultry productivity in our poultry 

industries. 
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