
 

Applied and Computational Mathematics 
2021; 10(5): 114-120 

http://www.sciencepublishinggroup.com/j/acm 

doi: 10.11648/j.acm.20211005.12 

ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) 

 

A Knot Invariant Defined Based on the Skein Relation with 
Two Equations 

Liu Weili
*
, Lu Huimin 

Department of Basic Science, Dalian Naval Academy, Dalian, China 

Email address: 
 

*Corresponding author 

To cite this article: 
Liu Weili, Lu Huimin. A Knot Invariant Defined Based on the Skein Relation with Two Equations. Applied and Computational Mathematics. 

Vol. 10, No. 5, 2021, pp. 114-120. doi: 10.11648/j.acm.20211005.12 

Received: September 9, 2021; Accepted: October 10, 2021; Published: October 16, 2021 

 

Abstract: Knot theory is a branch of the geometric topology, the core question of knot theory is to explore the equivalence 

classification of knots; In other words, for a knot, how to determine whether the knot is an unknot; giving two knots, how to 

determine whether the two knots are equivalent. To prove that two knots are equivalent, it is necessary to turn one knot into 

another through the same mark transformation, but to show that two knots are unequal, the problem is not as simple as people 

think. We cannot say that they are unequal because we can't see the deformation between them. For the equivalence classification 

problem of knots, we mainly find equivalent invariants between knots. Currently, scholars have also defined multiple knot 

invariants, but they also have certain limitations, and even more difficult to understand. In this paper, based on existing 

theoretical results, we define a knot invariant through the skein relation with two equations. To prove this knot invariant, we 

define a function f(L), and to prove f(L) to be a homology invariant of a non-directed link, we need to show that it remains 

constant under the Reideminster moves. This article first defines the fk(L), the property of f(L) is obtained by using the properties 

of fk(L). In the process of proof, the induction method has been used many times. The proof process is somewhat complicated, but 

it is easier to understand. And the common knot invariant is defined by one equation, which defining the knot invariant with two 

equations in this paper. 
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1. Introduction 

Topology is a branch of mathematics that is mainly 

studying the properties that objects remain unchanged after 

continuous transformations. And a more attractive area of 

topology is knot theory, there are two main reasons: One is 

because it studies real geometric phenomena in real life; the 

other is because it is mysterious to use different methods to 

study it thoroughly. Because of this, knot theory meets 

topology like differential geometry, number theory, algebraic 

geometry, matrix theory and group theory. Long long ago, 

people have already tie with rope, the most famous is: knot 

rope can remember, that is to record things in life by tying 

knots on the rope. knots can be seen everywhere in people's 

daily life, such as the popular Chinese knot during the Spring 

Festival in recent years, tying things with rope, sewing 

clothes, tying shoelaces, knitting sweaters and so on. On 

different occasions, people use different knots, so how to 

describe the knot mathematically? Although the famous 

allusion to the knot rope appeared before the invention, but 

from the mathematical perspective began in the 19th century, 

started by the German mathematician Calfried Gauss, he 

studied the nature of the electromagnetic field, found that the 

circle number between closed curves is related to the knot, 

this discovery laid a solid foundation for the study of knot 

theory, so the circle number became one of the main tools for 

scholars to study the knot. In 1867, Lord Kelvin regarded the 

atoms as the knot of the Etheric vortex, and one could 

classify the atoms with the aid of the classification of them. 

At the time, the hypothesis attracted many mathematicians, 

chemists, physicists to study knots, and knot theory emerged. 

A knot is the way a ring is embedded in 3 D space. Since any 

two knots are identical in the sense of homoderm, and we 

mainly study the way the curve is embedded in S
3
, we do not 

consider the length, the hardness, the degree of bending and 

the thickness of the curve itself. The knot theory is mainly to 
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explore the equivalence classification of knots [1]. Trefoil 

knots are the simplest extraordinary knots. To prove that two 

knots are equivalent, it is necessary to turn one knot into 

another through the same mark transformation. But to show 

that two knots are unequal, the problem is not as simple as 

people think. We cannot say that they are unequal because we 

can't see the deformation between them. For the equivalence 

classification problem of knots, we mainly find equivalent 

invariants between knots. In 1928, the Alexander of the 

United States discovered the first knot polynomial invariant 

in history, in 1969; British Conway modified Alexander 

polynomials to obtain the Conway polynomial [2]. In 1984, 

the New Zealand mathematician Jones obtained Jones 

polynomials when studying operator polynombras, 

Subsequently, many scholars have found some more general 

knot invariants, such as chain ring branch number in [3], A 

family of polynomial invariants for flat virtual knots in [4], 

Whitney towers and abelian invariants of knots in [5], An 

infinite-rank summand of knots with trivial Alexander 

polynomial in [6], A polynomial time knot polynomial in [7], 

Regional knot invariants in [8], A free-group valued invariant 

of free knots in [9], An invariant for colored bonded knots in 

[10], Multi-switches and virtual knot invariants in [11], 

Invariants of knot diagrams in [12], which provide a strong 

theoretical basis for distinguishing knots, but these invariants 

are still insufficient, which prompted people to continue to 

find new knot invariants, this paper construct a new one to 

provide a new method for the classification of knots. 

2. Preliminary Data 

Definition 2.1 An embedded K: 1 3
S R→  in S1 to R3 is a 

knot. 

The knot on the left in Figure 1 is the simplest knot, 

commonly known as an ordinary or unknot; the knot on the 

right is called a trefoil knot. Figure 2 are several examples of 

additional knots. 

 

Figure 1. The unknot and A trefoil knot. 

 

Figure 2. Knots. 

A link is composed of finite knots in space, and they 

disintersect each other. If a link is composed of n nodes, it is 

called the link with n branches, and each knot forming the link 

is called a branch of the link. Obviously, the knot is a special 

link, and it has only one branch. 

Obviously, in the plane, a link composed of finite multiple 

disjoint junctions must be a trivial link. 

Below are several simple links: 

 

Trivial 2-component link Hopf link 

 

Whitehead link Borromean rings 

Figure 3. Links. 

Definition 2.2 [13] We say that two links 1L and 2L in 3
S are 

isotopic, written 1 2L L≈ , if there exists an isotopy 

3 3
:F S I S× →  such that 0F Id= , 1 1 2( )F L L= . 

Definition 2.3 [14] If a projection diagram of the link K  

meets the following conditions: 

(1) Only a finite points on the projection plot are 

overlapping points; 

(2) This finite overlap points are the cross sections of the 

two arcs on the link; 

(3) At each key, the image of the arc located at the knot 

above indicates a solid line, and the line disconnected at 

the secondary key indicates the image of the arc at the 

knot below; 

It is called a regular projection graph of the link K. 

Theorem 2.1 [15] Two links diagrams are equivalent if and 

only if there are finite multiple Reidemeister moves, make one 

turn into the other. 

The three Reidemeister moves are performed as follows: 

 

(R1 is to eliminate or add a volume) 

 

(R2 is to add or eliminate a stacked binary) 

 

(R3 is a triangle change) 

Figure 4. Reidemeister moves. 

Definition 2.4 Let K be a knot, and if K has a projection 

graph on which a n intersection transformation yields an 

ordinary knot, and no junction transformation for any 

projection graph doing less than n times of K, the number of 
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solution knots of K is called n. written u (K)=n. 

Proposition 2.1 Any projection graph G, given a knot K so 

that its number of in tersections is that n, can always pass an 

intersection transformation of no more than n times and turn it 

into a projection graph of ordinary nodes. 

3. Proposal of Polynomial Invariants 

If 0, , ,L L L L+ − ∞ is the projection diagram representing the 

four links, they are exactly the same elsewhere except for the 

local difference of an intersection shown in Figure 5. 

 

Figure 5. An Local link projection diagram. 

Definition 3.1 [16] If an algebra is generated by 

, , , ', ', 'a b c a b c , 1,2,nt n = ⋯ , and the following three 

conditions are met: 

(1) 2 2
=1, ' =1, , ' ' 'a a c ab c a b= − = − . 

(2) ( ) ( )' ' ' 0, ', ( ' 1) 0a a b a a b bb bb aa bb− = − = = − = . 

(3) ( ) 11 0, 1n na c t bt n+− + + + = ≥ . 

Then this algebra generates a Z-algebra, written Σ . 

Theorem 2.1 Given an algebra Σ , there are homomorphic 

invariants with unique non-orientations of the links ( )f L ∈Σ , 

and there are the following two types of establishment: 

(1) ( )n nf T t=  (initial condition) (Tn is the trivial link with 

n branches). 

(2) When the intersection comes from the same branch, 

0( ) ( ) ( ) ( )f L af L bf L cf L+ − ∞= + + . 

When the intersection comes from different branches, 

0( ) ' ( ) ' ( ) ' ( )f L a f L b f L c f L+ − ∞= + + . 

4. Theorem Proving 

Definition 4.1 Let L be a directional link diagram of n 

branches, 1( , , )nB b b= ⋯  is the basis points of L, each 

branch takes a point and cannot be an intersection. If it goes 

back to b1 from b1, back to b2 from b2, and so on, back to bn 

from bn in the direction of L, If each intersection is the 

upper intersection, the L is a decreasing graph relative to 

the base B. 

Definition 4.2 Relative to a basis point B, If advanced along 

the indicated direction, the first crossing of the intersection is 

through under it, hen say the intersection is a bad point relative 

to the base point B. The number of bad intersections is called 

the number of bad intersections, written ( )b L . 

Lemma 4.1 [17] L is a strand link diagram of K 

intersections and has a fixed branching order 1 2, , , nL L L⋯ . 

then either L has a trivial branch or you can choose a set of 

basis points 1( , , , , )i nB b b b= ⋯ ⋯  to drop relative to the 

basis points B and the number of intersections becomes a 

less than K intersection after a series of Reidemeister 

transformations. 

To prove the theorem 2.1, A function f(L) is defined. To 

prove that f(L) is a homomorphic invariant of a 

non-orientations links,, Only Certificate f(L) remains 

unchanged under the Reideminster transformation. for this 

purpose, first define ( )kf L , The property of f(L) is obtained 

by using the properties of ( )kf L . The specific proof is given 

below (for writing convenience, the same branch when the 

intersection comes from the same branch, and the different 

branches when the intersection comes from different 

branches): 

Prove First, give any orientation of the link. 

We demonstrate this using a mathematical induction 

method on ( )cr L  ( ( )cr L represents crossing points in the 

diagram). 

I. For a diagram L of n components with ( ) 0cr L = , we 

put ( )0 nf L t=  

II. when 0, ( )k cr L k≥ ≤ , The assumption ( )kf L A∈ is 

defined and ( )kf L satisfied: 

( )k n nf U t=  

(for Un being a descending diagram of n components). 

0( ) ( ) ( ) ( )k k k kf L af L bf L cf L+ − ∞= + +  

(Same branchs) 

0( ) ' ( ) ' ( ) ' ( )k k k kf L a f L b f L c f L+ − ∞= + +  

(Different branches) 

( ) ( )( )k kf L f R L=  

( R is Reideminste rmoves that makes ( )( )cr R L k≤ ) 

Since ( )kf L is uniquely determined by the above several 

properties, and each knot projection graph can decompose into 

a linear combination of a series of descent graphs, so a 

function ( )kf L  is defined, written ( ) ( )kf L f L= . 

Due to the ( )kf L being met: 

0

0

( ) ( ) ( ) ( )(

( ) ' ( )

 

' )  ( ) ' (

k k k k

k k k k

Same branchs

Different branche

f L a

s

f L bf L cf L

f L a f L b f L c f L

+ − ∞

+ − ∞

= + +
= + +

）

（ ）
 

So on the cross point ( )cr L k≤ , ( )f L satisfied: 

0

0

( ) ( ) ( ) ( )(

( ) '

 

( ) ' ( ) ' (  )

Same branchs

Different branch

f L af L bf L cf L

f L a f L b f L c f esL

+ − ∞

+ − ∞

= + +
= + +

）

（ ）
 

If R is a Reidemeister move on a diagram L, then 

( )( ) ( ) 2cr R L k cr L≤ = +  

So 
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( )( ) ( )( )kf R L f R L=  

( ) ( )kf L f L=  

by properties of ( )kf L : ( ) ( )( )k kf L f R L= . 

So 

( ) (R( ))f L f L=  

When ( )cr L k≤ , ( )f L stay unchanged under 

Reidemeiste rmoves. 

So nU is isotopy to nT . 

For ( )k n nf U t= , 

So 

( )k n nf T t= . 

Therefore 

( )n nf T t=  

III. Determine a function  related to the basis point 

for a given knot projection graph and the corresponding 

basis point. 

When ( )cr L k≤ , we put ( ) ( )B kf L f L=  

If nU is a descending diagram with respect to B , we put

( )B n nf U t=  (n denotes the number of components). 

Next, the b(L) is summarized below: 

Assume that ( )Bf L is defifined for ( ) 1cr L k≤ +  and 

( )b L t< , when ( )b L t=  

If p is the first bad crossing of L, 

0

0

( ) ( ) ( ) ( )(

( ) ' ( ) '

 

 ( ) ' ( )

B B B B

B B B B

f L af L bf L cf L

f L a f

Same branchs

Different branchL b f L esc f L

+ − ∞

+ − ∞

= + +
 = + +

）

（ ）
 

The other points of the following certificate also meet the 

relationship formula: 

0

0

( ) ( ) ( ) ( )(

( ) ' ( ) '

 

 ( ) ' ( )

B B B B

B B B B

f L af L bf L cf L

f L a f

Same branchs

Different branchL b f L esc f L

+ − ∞

+ − ∞

= + +
 = + +

）

（ ）
 

To facilitate writing, pL+ indicates cross points p is L+ ; 

pqL++ indicates cross points p is L+ , q is L+ ; pqL+− indicates 

cross points p is L+ , q is L− and so on. 

We will represent the considered intersections with the p. 

We think about the case ( ) ( )P Pb L b L+ −>  

If p is an intersection from the same branch (Other cases are 

similarly discussed). 

The ( )Pb L−  is summarized below: 

when ( ) 0Pb L− = , there is +( )=1Pb L  p is the only bad 

intersection of PL+ . 

such that ( ) , 1Pb L t t− < ≥ . 

+( )=t 1 ( ) 2P Pb L b L− ≥ ≥，  

If q is the first bad intersection on PL+ . 

I Assume that q=p, the conclusion was established 

II Assume q p≠ , if q is L+ and the intersection is on the 

same branch. 

0( ) ( ) ( ) ( ) ( )
pqP pq pq pq

B B B B Bf L f L af L bf L cf L+ ++ +− +∞+= = + +  

And ( )pqb L t−− < 0( ) , ( )
pq pqcr L k cr L k+∞+ ≤ ≤  

Judging from the above induction and the main induction 

method: 

0

0 0 00 0

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ' ( ) ' ( ) ' ( )

pqpq pq pq
B B B B

pq pq pq pq
B B B B

pqpq pq pq
B B B B

f L af L bf L cf L

f L af L bf L cf L

f L a f L b f L c f L

+− −− ∞−−

+ − ∞

+∞ −∞ ∞∞∞

= + +

= + +

= + +

 

And by algebras Σ , the conditions (1)(2) are easy to launch

'a c ac=  'b c bc=  'c c cc=  

And ( )pqb L t−− < , 
0( ) , ( )
p pcr L k cr L k∞≤ ≤  

So 

0

0 0 0 00 0

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ' ( ) ' ( ) ' ( )

pqp pq pq pq
B B B B B

p pq pq pq pq
B B B B B

pqp pq pq pq
B B B B B

f L f L af L bf L cf L

f L f L af L bf L cf L

f L f L a f L b f L c f L

− −+ −− −∞−

+ − ∞

∞ ∞+ ∞− ∞∞∞

= = + +

= = + +

= = + +

 

Therefore, it is available using the above formula: 

( )p
Bf L+ +0( ) ( ) ( )

pqpq pq
B B Baf L bf L cf L+− ∞+= + +

0( ) ( ) ( )
pqpq pq

B B Baf L bf L cf L−+ ∞++= + +  

=
0( ) ( ) ( )
pp p

B B Baf L bf L cf L− ∞+ +  

So 

0( ) ( ) ( ) ( )
pp p p

B B B Bf L af L bf L cf L+ − ∞= + +  

q  is L+  and Crossing are similarly probable when on 

different branches. 

Therefore, ( )Bf L  satisfied Relationships: 

0

0

( ) ( ) ( ) ( )(

( ) ' ( ) '

 

 ( ) ' ( )

B B B B

B B B B

f L af L bf L cf L

f L a f

Same branchs

Different branchL b f L esc f L

+ − ∞

+ − ∞

= + +
 = + +

）

（ ）

 

We will show that when the branch order does not change, 

fB (L) does not depend on the selection of the base points. Take 

ib ′ after bi and have only one intersection in the middle, say p, 

between bi and 
ib ′ . 

Make '
1' ( , , , , )i nB b b b= ⋯ ⋯  

( )Bf L
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Suppose p is the type L+, and the type L- can be proved 

similarly. 

The induction method is used on ( ) max( ( ), '( ))L b L b Lβ =  

1. Assume ( ) 0Lβ = , then ( ) 0 '( )b L b L= = , then L and 

'L  are descending with respect to both choices of base 

points, So 

'( ) ( )B n Bf L t f L= = . 

2. Assume that ( ) 1Lβ =  

(1) When ( ) 1, '( ) 0b L b L= = , we can know that L is 

descending relative to b′. 

'( )B nf L t= , 

0( ) ( ) ( ) ( ) ( )
pp p p

B B B B Bf L f L af L bf L cf L+ − ∞= = + +  

(a) If pL∞ branch more than one, 

1( ) ( )B n nf L a b t ct += + +  so 

'( ) ( )B n Bf L t f L= =  

(b) If 0
p

L branch more than one, then 

1 '( ) ( ) ( )B n n n Bf L a c t bt t f L+= + + = =  

(2) ( ) 0b L = , '( ) 1b L = , a similar proof may be made. 

(3) '( ) ( ) 1b L b L= = , p is the intersection on the different 

branches. 

' ' '

0

' 0

( ) ' ( ) ' ( ) ' ( )

( ) ' ( ) ' ( ) ' ( )

B B B B

B B B B

f L a f L b f L c f L

f L a f L b f L c f L

− ∞

− ∞

= + +
= + +  

and ( ) ( )qL Lβ β− < , 
0( )
q

cr L k≤ , ( )qcr L k∞ ≤  

So 

'0 0( ) ( )
q q

B Bf L f L= , 

'( ) ( )q q
B Bf L f L− −= , 

'( ) ( )q q
B Bf L f L∞ ∞=  

Therefore 

'( ) ( )B Bf L f L=  

3. ( ) 1L tβ = > , if q is L+ and the intersection q  is 

derived from the same branch (Other cases may be 

similar). 

0

' ' ' '0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

qq q q
B B B B

qq q q
B B B B

f L af L bf L cf L

f L af L bf L cf L

+ − ∞

+ − ∞

= + +

= + +
 

and ( ) ( )qL Lβ β− < , 

So 

'( ) ( )q q
B Bf L f L− −= , 

0( )
q

cr L k≤ , ( )qcr L k∞ ≤  

Therefore 

'0 0( ) ( )
q q

B Bf L f L= , 

'( ) ( )q q
B Bf L f L∞ ∞=  

'( ) ( )B Bf L f L=  

Therefore, we written 
~

( ) ( )Bf L f L= . 

The following certificate remains unchanged under the 

Reidemeister moves. 

Let L be a link diagram that keeps the branching order 

unchanged, R is the Reidemeister moves on L  

If ( ) 1, ( ( )) 1cr L k cr R L k≤ + ≤ + , 

We use induction on ( )b L : 

(1) ( ) 0b L = , so ( ( )) 0b R L = , Since the number of 

branches is unchanged, so 

( ) ( ( ))f L f R L=ɶ ɶ  

(2) ( )b L t< , ( ) ( ( ))f L f R L=ɶ ɶ  

(3) ( )b L t= , 

(a) If a bad intersection point p is not involved in the 

Reidemeister move, then: 

Suppose p is the type L+ and the intersection is from the 

same branch, other cases are similar. It can be seen from the 

hypothesis: 

( ) ( ( ))p pf L f R L− −=ɶ ɶ  

0 0( ) ( ( ))
p p

f L f R L=ɶ ɶ  

( ) ( ( ))p pf L f R L∞ ∞=ɶ ɶ  

and 

0( ) ( ) ( ) ( ) ( )
pp p pf L f L af L bf L cf L+ − ∞= = + +ɶ ɶ ɶ ɶ ɶ

0( ( )) ( ( )) ( ( )) ( ( ))
pp p pf R L af R L bf R L cf R L+ − ∞= + +ɶ ɶ ɶ ɶ

( ( )) ( ( ))pf R L f R L+=ɶ ɶ  

So 

( ) ( ( ))f L f R L=ɶ ɶ  

(b) There is no other bad point except for the bad point 

involved in the Reidemeister moves. 

For the third Reidemeister move, if p  is the intersection 

point from the same branch and p  is L+ . 
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Figure 6. The corresponding Reidemeister move. 

0( ) ( ) ( ) ( ) ( )
pp p pf L f L af L bf L cf L+ − ∞= = + +ɶ ɶ ɶ ɶ ɶ

0( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )
pp p pf R L af R L bf R L cf R L+ − ∞= + +ɶ ɶ ɶ ɶ

( ( )) ( ( ) )pf R L f R L +=ɶ ɶ  

After a single 3R transformation, ( ) ( )R L R L− −=  

After a single 2R transformation, ( ( )) ( )R R L R L∞ ∞=  

So 

( ) ( ( ) )p pf L f R L=ɶ ɶ  

For the first Reidemeister move, the basis point can always 

be transformed to make it good. 

For the second Reidemeister move, there is only one case 

that cannot make the bad point better. That is, the intersections 

are from different branches and the intersection types are 

different. As shown in Figure 7. 

 

Figure 7. Exceptional case. 

For this case, it is easily established by transformation and 

known conditions. 

To sum up, ( )f Lɶ remains constant under the Reidemeister 

moves. So it can be ordered 1( ) ( )kf L f L+ = ɶ . 

Now we prove the independence of ( )f Lɶ  of the branch 

order. 

For a strand link diagram ( ( ) 1)L cr L k≤ +  and fixed base 

points 1 1( , , , , , )i i nB b b b b+= ⋯ ⋯  and 

1 1( , , , , , )i i nB b b b b+= ⋯ ⋯ , we can derive '( ) ( )B Bf L f L= . 

We use induction on ( )b L : 

(1) ( )b L =0, it is established by lemma 4.1. 

(2) If established at ( )b L t<  

(3) ( )b L t= , Let p be a bad intersection. 

If p is L+ , ( )b L t− <  

By induction: 

'( ) ( )B Bf L f L− −= , 

0( )cr L k≤ , 

( )cr L k∞ ≤  

Therefore 

B '( ) ( )Bf L f L= . 

Since the disassembly relation is independent of orientation, 

and the polynomial invariant of each chain loop is finally 

represented as some linear combination of decreasing knot 

graphs, it is easy to know that this polynomial invariant is 

independent of orientation, that is, the invariant is the same 

trace invariant of the non-orientation link. 

This completes the proof. 

5. Conclusion 

In this paper, knot invariants by defining a system of split 

equations containing two equations, while common knot 

invariants are defined by a split equation which is a new 

method. This paper demonstrates the newly defined 

polynomial invariants by adopting multiple induction; 

Although the proof process is complicated, it is easy to 

understand, Compared to its proof, its practical application is 

somewhat difficult, which requires us to study later. 
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