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Abstract: This paper introduces a weighted analytic center for a system of second order cone constraints. The associated 

barrier function is shown to be convex and conjugate gradient (CG) methods are used to compute the weighted analytic center. 

In contrast with Newton’s-like methods, CG methods use only the gradient and not the Hessian to minimize a function. The 

methods considered are the HPRP and ZA with exact and inexact line searches. The exact line search uses Newton’s method 

and quadratic interpolation is used for the inexact line search. The performance of each method on random test problems was 

evaluated by observing the number of iterations and time required to find the weighted analytic center. Our numerical methods 

indicate that ZA is better than HPRP with any of the two line searches, in terms of the number of iterations and time to find the 

weighted analytic center. Quadratic interpolation inexact line search gives the best success rate and fewest number of iterations 

for the CG methods considered. On the other hand, the fastest time for the CG methods is found with the Newton’s exact line 

search. In addition, these results indicate that for each of the methods, our Quadratic interpolation inexact line search has a 

higher cost per iteration than that of the Newton’s exact line search. 

Keywords: Second-Order Cone Constraints, Weighted Analytic Center, Conjugate Gradient Methods,  

Interior-point Methods 

 

1. Introduction 

Consider a system of second-order cone constraints of the 

form: 

0 (j=1,2,...,q),T
j j j jc x d A x b+ − + ≥� �            (1) 

,nx ∈ℝ jA is an jm n×  matrix, ,jm

jb ∈ℝ  n
jc ∈ℝ , and 

.jd ∈ℝ  The norm is the standard Euclidean norm. Let 

0, 1,2, ,{ }n T
j j j jx c x d A x b j q= ∈ + − + ≥ = …ℝ � �R ∣  (2) 

denotes the feasible region defined by the SOC constraints in 

(1). Assume R  is bounded and that it has a non-empty 

interior. 

Second order cone (SOC) constraints are important to 

study because there exist many optimization problems where 

the constraints can be written in this form. For instance, SOC 

constraints can be used to easily represent problems dealing 

with norms and hyperbolic constraints. An optimization 

problem where the constraints are SOCs is called a second-

order cone programming problem. There are also a huge 

number of real world applications of SOCs in areas such as 

antenna array weight design, grasping force optimization, 

and portfolio optimization [29, 26]. Furthermore, there exist 

efficient interior point methods for solving second-order cone 

programming problems [29, 9, 19]. The study of second-

order cone programming has continued to be of interest [12, 

17, 33, 31]. 

This work extends the notion of weighted analytic center 

from linear programming (LP) to SOC constraints. This 

extension differs from that given for linear matrix inequality 

constraints [22]. In the special case of linear constraints, the 

weighted analytic center has been studied extensively in the 

past [3, 8]. The study of weighted analytic center for second-

order cone constraints is of interest in its own right. Some 
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algorithms in linear programming, Quadratic Programming 

and semidefinite programming are based on weighted 

analytic centers [25, 7, 18]. 

Weighted analytic center for SOCs can be found using the 

Standard Newton’s method by minimizing the related barrier 

function. This approach has the drawback that both the 

gradient and the Hessian of the barrier function are required 

at each iterate. Also, Newton’s method may not work well 

when some of the weights are relatively very large relative to 

the other weights as the hessian matrix becomes ill-

conditioned. This study considers computing the weighted 

analytic center using conjugate gradient (CG) methods. 

CG methods are popular for solving large scale non-linear 

unconstrained optimization problems. They are characterized 

by strong global convergence properties and low memory 

requirement [1]. CG methods use only the gradient of the 

barrier function. They do not need the hessian of the barrier 

function. Our work uses the ZA CG method given by Salleh 

et al [24], which is a modification of the classical HS method 

[11]. The ZA method is compared with the HPRP method 

presented by Alhawarat et al [2]. HPRP is a modification of 

the classical PRP method [20]. Both ZA and HPRP are 

implemented using the Newton’s exact line search and 

Quadratic interpolation inexact line search [14, 5]. The 

performance of each method on random test problems will be 

evaluated by observing the number of iterations and time 

required to find the weighted analytic center. 

Our results indicate that ZA is better than HPRP in terms 

of the number of iterations and time to find the weighted 

analytic center. Quadratic interpolation line search gives the 

best success rate and fewest number of iterations for the CG 

methods considered. On the other hand, the fastest time for 

the CG methods is found with the Newton’s exact line search. 

2. Weighted Analytic Center for Second 

Order Cone Constraints 

This section introduces weighted analytic center for the 

system of second order cone constraints (1). 

Consider a weight vector 1 2( , , , ),qω ω ω ω= … qω ∈ℝ  and 

the feasible region R  (2). The interior of R is given by 

                                                (3) 

The weighted analytic center for the system (1) is given by 

,       (4) 

where : ( )intωφ → ℝR  is a barrier function over the interior 

of R defined by: 

1

( ) ( ).

q
T

j j j j j

j

x log c x d A x bωφ ω
=

= − + − +∑ � �          (5) 

The weighted analytic center is unique when ( )xωφ  is 

strictly convex over the interior of R. Our definition of 

weighted analytic center extends the one for linear 

constraints [3, 8]. Note that the barrier function ( )xωφ  

becomes infinitely large as x approaches the boundary of the 

feasible region from the interior. Hence, the weighted 

analytic center is an interior point. 

Theorem 2.1 ( )xωφ  is convex over ( )int R . 

Proof: For convenience, let ( ) Tf x c x d Ax b= + − +� � . 

Then, ( ) 0f x >  over ( )int R  and ( )f x  is concave over n
ℝ

[30]. Now, since log is an increasing function and concave 

over ,+ℝ  then ( )Tlog c x d Ax b+ − +� �  is concave over 

( )int R  [27]. The sum of concave functions is concave and 

so, 

1

( )

q
T

j j j j j

j

log c x d A x bω
=

+ − +∑ � �

 is concave over ( )int R . 

Hence, 

1

( ) ( )

q
T

j j j j j

j

x log c x d A x bωφ ω
=

= − + − +∑ � �

 is convex 

over ( )int R . 

Lemma 2.1 Let ( ) Tf x c x d Ax b= + − +� � . The gradient 

and the Hessian of ( )f x  are given by 

( )
( )

TA Ax b
f x c

Ax b

+∇ = −
+� �

                         (6) 

3

( )( ( ))
( ) .

T T T T

f

A Ax b A Ax b A A
H x

Ax bAx b

+ += −
++ � �� �

      (7) 

Proof: For the gradient, use the fact that

( ) ( ) ( )
T T

f x c x d Ax b Ax b= + − + +
. To get the Hessian, 

apply the quotient differentiation rule to the gradient function 

(6). 

Theorem 2.2 The gradient denoted by ( ) ( )g x xωφ= ∇  and 

the Hessian
( )xH

ωφ
of the barrier function ( )xωφ  are given by 

1

( )1
( )

Tq
j j j

j jT
j jj j j jj

A A x b
g x c

A x bc x d A x b
ω

=

 +
 = − −
 ++ − +  

∑
� �� �

                                              (8) 
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( )

1

( ),

q
T

x j j j j

j

H B u v
ωφ ω

=

= +∑                                                                (9) 

where 

2

3

( ) ( )( ( ))1
T T T T

j j j j j j j j j j

j T
j j j j j j

A x b A A A A x b A A x b
B

c x d A x b A x b

 + − + +
 = −
 + − + + 

� �

� � � �
 

2

( )1

( )

T
j j j

j jT
j jj j j j

A A x b
u c

A x bc x d A x b

 +
 = − −
 ++ − +  

� �� �
 

( )T
j j j

j j
j j

A A x b
v c

A x b

+
= −

+� �
 

Proof: Let ( ) ( )T
j j j j jf x log c x d A x b= + − +� � . By Lemma 

2.1 and using the composition of functions differentiation 

rule, the gradient of ( )jf x  is given by 

( )1
( )

T
j j j

j jT
j jj j j j

A A x b
f x c

A x bc x d A x b

 +
 ∇ = −
 ++ − +  

� �� �
 

Now, let 1( ) log( )h x x= and 2 ( ) T
j j j jh x c x d A x b= + − +� � . 

Then 1 2( ) ( )( )jf x h h x= °  and 2
1 2( ) ( ( )) ( ).

i i

hh
x h h x x

x x

∂∂ ′=
∂ ∂

 So, 

22
2 2 2

1 2 1 2( ) ( ( )) ( ) ( ( )) ( ) ( ).
i j i j i j

h h hh
x h h x x h h x x x

x x x x x x

∂ ∂ ∂∂ ′ ′′= +
∂ ∂ ∂ ∂ ∂ ∂

 

Hence, using a result in the proof of Theorem 1 in Barta et 

al study [4], the Hessian of ( )jf x  is obtained as: 

( ) ,
j

T
f j j jH x B u v= +  

where , ,j j jB u v  are given by: 

21 2( ( )) ( )j hB h h x H x′=  

1 2 2( ( )) ( )ju h h x h x′′= ∇  

2( )jv h x= ∇  

By Lemma 2.1, the above gives , ,j j jB u v  as defined in 

the theorem. The rest of the proof follows by extending the 

gradient and Hessian obtained above to sum of functions and 

their scalar product. 

It can be seen from Theorem 2.2 that the gradient of the 

barrier function does not exist when 0j jA x b+ =� �  for some 

j. But, in practice, one would only expect trouble if an iterate 

happens to be at a place of nondifferentiability. This is easy 

to address by simply randomizing the starting interior point. 

For example, one can use an iteration of any of the Monte 

Carlo methods applied to SOC constraints [15]. The result 

also shows that the computation of the Hessian of the barrier 

function is quite expensive. Hence, the result of Theorem 2.2 

indicates that conjugate gradient (CG) methods would be a 

good choice in comparison with the standard Newton’s 

method in finding the weighted analytic center. 

3. HPRP and ZA Conjugate Gradient 

Methods for Computing Weighted 

Analytic Center 

In this section, a brief description of the conjugate gradient 

methods is given. The discussion focuses on the HPRP and 

ZA methods used in our work. 

Consider a continuously differentiable function

: nf →ℝ ℝ  and the following unconstrained optimization 

problem 

{ ( ) : }nmin f x x∈ℝ                        (10) 

Let ( )g x  denote the gradient of ( )f x . A conjugate 

gradient method to find a solution to problem 3.1 works as 

follows. Given an initial guess
n

ox ∈ℝ , a sequence { }kx  is 

generated by: 

1k k k kx x sσ+ = +                             (11) 

and the direction ks  is defined as 

1
1

0,

1,

k
k

k k k

g if k
s

g s if kβ+
+

− =
= − + ≥

                      (12) 

where kx  is the current iterate, ( )k kg g x= , kβ  is the CG 

coefficient and 0kσ >  is the step-length obtained by a line 

search. A common convergence criterion for a CG method is 

( )kg x TOL≤� � , where TOL is a given tolerance and ||.|| 

denotes the Euclidean norm. 

Over the years, a variety of CG formulas have been given, 

where the main differences is in the parameter βk. The work 

by [10] discussed details on some CG methods with special 

emphasis on their global convergence. In recent times, 

research has focused on modified CG methods [32, 23]. The 
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PRP and HS classical CG methods are given in the Table 1. 

Table 1. PRP, HS and NPRP Methods. 

No. βk Method name References 

1 
 

PRP method [20] 

2 1

1 1

( )

( )

T
k k k

T
k k k

g g g

s g g

−

− −

−
−

 HS method [11] 

3 

2
1

1
2

1

| |Tk
k k k

k

k

g
g g g

g

g

−
−

−

− � �
� �

� �

� �
 NPRP method [24] 

 

A CG method is called globally convergent if 0kg =  for 

some k  or 
0

inim fl 0k
k

g
→

=  [10]. It is said to have the 

jamming property if the method packs tightly into a specified 

space due to a very small step size kσ . This results in the 

method taking infinitely many steps without converging. 

However, it is said to have a restart property if the method 

can jump out of the loop whenever jamming is encountered 

and take a bigger step size kσ  to continue the search for a 

minimum of the given function [10]. 

PRP is globally convergent when ( )f x  is strongly convex 

and the line search is exact [20]. PRP and HS method with 

exact line search coincide and each is globally convergent if 

1 .k kx x+ −  converges to 0 and g is Lipschitz continuous in a 

neighborhood of the level set 0{ ( ) ( )}nx g x g x= ∈ ≤ℝL ∣  

[21]. Both PRP and HS have the restart property but may not 

be globally convergent with the strong Wolfe-Powell (SWP) 

line search. 

A modification of the PRP method called the HPRP 

method is given by Alwaharat et al [2]. For this method, the 

parameter kβ  is defined by 

2
1,

,

PRP T
k k k kHPRP

k NPRP
k

if g g g

otherwise

β
β

β
− >= 



� � �
            (13) 

HPRP has the restart property and globally convergent 

with SWP line search. Numerical results show that HPRP is 

almost better than other related PRP formulas in both the 

number of iterations and the CPU time [2]. The ZA method is 

a modification of HS given by Salleh et al [24]. Here, kβ  is 

given by 

2
21

1

1 1

,
( )

0 ,

T
Tk k k

k k kZA T
k k k k

g g g
if g g g

s g g

otherwise

β
−

−
− −

 −
>= −




� �
� � �

    (14) 

ZA is globally convergent with the SWP line search and it 

has the restart property. The numerical results indicate that 

ZA is better than HS, PRP, and HPRP [24]. 

We will apply HPRP and ZA to compute the weighted 

analytic center (4) for second-order constraints. Both exact 

line and Quadratic interpolation inexact line search will be 

used. The computational strengths of the methods is 

compared. 

4. Quadratic Interpolation and Newton’s 

Method Line Searches 

This section describes exact and inexact stepsizes for our 

conjugate gradient methods. Newton’s method is used to find 

the exact stepsize and inexact stepsize is found using 

Quadratic interpolation. The section also discusses 

convergence for the methods. 

Let kx  be an interior point of R  and ks  be a search 

direction vector. The following theorem shows how compute 

the distance from kx  to the boundary of the jth SOC in the 

direction .ks The result will be used in our Quadratic 

interpolation line search. 

Theorem 4.1 Suppose the ray { 0}k kx sσ σ+ ≥∣  intersects 

the boundary of 0T
j j j jc x d A x b+ − + ≥� �  at the point 

( ) .j
k kx sσ++  Then, the distance 

( )jσ +  is the minimum 

positive value from the solution 

2
( ) 4

,
2

j b b ac

a
σ +

− ± −=                    (15) 

where 

2( )T T T
j k k j j ka c s s A A s= −                     (16) 

2 ( ) 2 2T T T T T T
j k j k j k j j k k j jb c s c x d x A A s s A b= + − −   (17) 

2( ) 2T T T T T T
j k j k j j k k j j j jc c x d x A A x x A b b b= + − − −  (18) 

Proof: By assumption 
( )jσ +  exists, is positive and it 

satisfies 

( )( ) 0T j
j k k j j jc x s d A x bσ ++ + − + =� �  

Then 

( ) 2( ) ( ) ( )T j T T
j k j k j j j j jc x c s d A x b A x bσ ++ + = + +  

Solve the quadratic equation for 
( ).jσ+  Since 
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0T
j j j jc x d A x b+ − + >� �  in the interior of R , then 

( )jσ +  is 

the smallest positive solution of 4.1. 

Note that the solution (15) will have no positive values if 

{ 0}k kx sσ σ+ ≥∣  does not intersect the boundary of 

0.T
j j j jc x d A x b+ − + ≥� �  It follows from Theorem 4.1 that 

that the distance σ +  from kx  to the boundary of the 

bounded feasible region R in the direction ks  is given by 

( )min{ 1 },j j qσ σ+ += ≤ ≤∣                     (19) 

where 
( )jσ +  is given by (15). Note that σ +  exists since R  is 

bounded and kx  is an interior point of R . 

Consider the objective barrier function ( )xωφ  (5). Let ks  

be a conjugate direction generated by the CG algorithm at the 

current iterate .kx  Let ( ) ( )k kh x sωσ φ σ= + . The exact 

stepsize kσ  is given by 

{ ( ) 0}.k argmin hσ σ σ= ≥∣                    (20) 

The following result will be used in finding the stepsizes 

using Newton’s method. First, note that 

1

( ) ( )

q
T T

j j j k j j j k j

j

h log c x c s d A x A s bσ ω σ σ
=

= − + + − + +∑ � �                                                        (21) 

Lemma 4.1 Let kx  be a conjugate direction generated by the CG algorithm at the current 

iterate kx . Then,  

1

( )

q
j

j
jj

f
h

e
σ ω

=

′ = −∑                                                                                      (22) 

2

1

( ) ,

q
j j

j
j jj

f g
h

e e
σ ω

=

  
 ′′ = − 
     

∑                                                                          (23) 

where, 

T T
j j k j k j j k j k je c x c s d A x A s bσ σ= + + − + +� �  

T T T T T T
k j j k k j j k k j jT

j j k
j k j k j

x A A s s A A s s A b
f c s

A x A s b

σ
σ

+ +
= −

+ +� �
 

2

3

( )
T T T T T T T T
k j j k k j j k k j j k j j k

j
j k j k jj k j k j

x A A s s A A s s A b s A A s
g

A x A s bA x A s b

σ
σσ

+ +
= −

+ ++ + � �� �
 

Proof: Let 

( ) ( )T T
j j k j j j k jf x log c x c s d A x A s bσ σ= + + − + +� �  

and 

1( ) T T
j j k j j j k jh c x c s d A x A s bσ σ σ= + + − + +� �  

Let 1( )je h σ= , 1( )jf h σ′=  and 1( )jg h σ′′= . Then 

1

1

( )
( )

( )

j

j

fh
f

h e

σσ
σ

′
′ = =  

2
2

1 1

2
1 1

( ) ( )
( )

( ) ( )

j j

j j

g fh h
f

h e eh

σ σσ
σ σ

′  ′ ′
′′ = − = −  

 
 

 

The rest of the proof follows by extending the result 

obtained to sum of functions and their scalar product. 

The following describes Quadratic interpolation line 

search for approximating the stepsize kσ  (20) in our CG 

algorithms [5]. 

Quadratic Interpolation 

Step 1: Use (19) to find the distance σ +
 from 

kx  to the 

boundary of the bounded feasible region R in the direction 

ks  

Step 2: Set 1 0α =  and 3α σ +=  

Step 3: Consider ( ) ( )k kh x sωα φ α= +  
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Repeat 

3 3 / 2α α=  

Until 3 1( ) ( )h hα α<  

Let 2 3 / 2α α=  

Step 4: Compute the zero of the quadratic polynomial 

( )P α  passing through the points 1 1( , ( ))Pα α , 2 2( , ( ))Pα α and 

3 3( , ( ))Pα α . The zero is given by 

* 1
2

3

1
,

2

h

h
α α

 
= − 

 
 

where 

2 1
1

2 1

h( ) h( )
h

\al

α − α
=

α −
 

3 2
2

3 2

( ) ( )h h
h

α α
α α

−
=

−
 

2 1
3

3 1

.
h h

h
α α

−
=

−
 

Step 5: 

if *
3α α<  

Set 3kα α=  

else 

Set *
kα α=  

end 

5. Numerical Experiments 

This section gives numerical experiments to compare 

HPRP and ZA methods. The methods use Newton’s exact 

line search and the quadratic interpolation inexact line search. 

Table 2 describes the 31 random test problems used for our 

numerical experiments. For each SOC test problem, integer 

values q  and n  are generated uniformly in the intervals [1, 

6] and [2, 10] respectively. Then qm ∈ℤ  is generated such 

that each entry im  is uniform in the interval [1, 10]. After 

this, q  SOCs of the form 0Tc x d Ax b+ − + ≥� �  are 

generated using m  and n , where each entry of A , b  and 

c  are randomly chosen from the standard normal 

distribution (0,1)N  while d  is uniform in the interval (0,1) . 

The process ensures that only SOCs test problems where all 

the q  SOCs are satisfied at the origin are chosen. Table 2 

lists the SOC test problems. The second column of Table 2 

gives the dimension n of the ambient space and the third 

column is the number q of constraints. The fourth column 

gives the vector m. The last column gives the weight vector 

ω used for each test problem. One random entry of ω is set at 

100 and each other entry is an integer uniform in the interval 

[1, 10]. 

For each test problem and method, HPRP and ZA 

conjugate gradient methods are applied using a maximum of 

100 iterations and a tolerance TOL = 10
−4

. Each method is 

stopped after 100 iterations or if ( )kg x TOL≤� �  and the 

number of iterations and the CPU time taken are recorded. 

All codes were written in MATLAB. We deliberately chose 

test problems in Table 2 and weights where both ZA and 

HPRP were successful with Newton’s exact line search and 

Quadratic interpolation inexact line search in finding the 

weighted analytic center. 

Table 3 compares ZA and HPRP methods using the 

quadratic interpolation line search. The number of iterations 

and time taken to find the weighted analytic center are given 

in the table. Table 4 compares ZA and HPRP methods using 

the Newton’s exact line search. Let S be our set of solvers 

and F be the set of our test problems. Then, S = {ZA, HPRP} 

and F = {1, 2, 3,..., 31}. Let ,f st  be the number of iterations 

(or CPU time) to solve problem f using solver s. For 

comparison, scale ,f st  by the ratio 

,

,
,

.
{ }

f s

f s
f s

t
r

min t s
=

∈S∣
 

Now, as in [24], define the probability measure 

,

1
( ) { log },s f s

f

P t size f r t
n

= ∈ ≤F∣  

where fn  is the size of set .F  In our case, 31.fn =  Note 

that for solver s , ( )sP t  is the probability that its 

performance ratio ,f sr  on F  is within the value 
te  of the 

best possible ratio. 

The graph of ( )sP t is used to compare the performance 

profile of the methods on the test problem set F. Figure 1 

gives the performance profile of HPRP vs ZA based on the 

number of iterations and quadratic interpolation line search. 

The performance profile of HPRP vs ZA based on the CPU 

time and quadratic interpolation line search is given in Figure 

2. Figure 3 shows the performance profile of HPRP vs ZA 

based on the number of iterations and Newton’s exact line 

search. The performance profile of HPRP vs ZA based on the 

CPU time and Newton’s exact line search is given in Figure 4. 

It can be seen from the graphs Figure 1 - Figure 4 that ZA 

outperforms HPRP in both number of iterations and CPU 

time on our test problems. 

Figure 5 and Figure 6 are given to investigate the effect of 

line search on the performance of ZA. Figure 5 compares 

ZA-Int (ZA with quadratic interpolation line search) with 

ZA-Exact (ZA with Newton’s exact line search) on the 

number of iterations. Figure 6 compares ZA-Int with ZA-

Exact on the CPU time. It is clear from Figure 5 that ZA-Int 

is better than ZA-Exact in terms of number of iterations. 

However, Figure 6 shows that ZA-Exact outperforms ZA-Int 

in CPU time to find the weighted analytic center. This is not 

surprising since the quadratic interpolation line search 
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requires finding the boundary point along each direction of 

search. The results in Figure 5 and Figure 6 indicates that the 

interpolation line search is more expensive than the Newton’s 

exact line search. 

To compare the success rates of our methods in finding the 

weighted analytic, 100 random problems are generated as 

before. But, here the interest is in whether the method finds 

the weighted analytic center or not after 100 iterations and 

using TOL = 10
−4

. The results are given in Table 5. It is 

observed that ZA with quadratic interpolation has the highest 

success rate and almost equals that of HPRP with quadratic 

interpolation. It is also seen that the success rate depends 

much more on the line search used and not on the two 

methods. 

Table 2. SOC Test Problems. 

Problem n q M W 

1 3 4 [6, 10, 3, 6] [10, 3, 100, 3] 

2 2 6 [3, 7, 6, 5, 7, 5] [9, 9, 6, 2, 100, 10] 

3 9 4 [1, 4, 10, 9] [7, 10, 7, 100] 

4 4 3 [6, 9, 1] [10, 100, 9] 

5 10 6 [2, 4, 10, 8, 5, 2] [10, 10, 10, 100, 5, 3] 

6 5 1 [7] 100 

7 4 4 [5, 1, 8, 4] [5, 6, 100, 5] 

8 4 2 [5, 6] [10, 100] 

9 4 5 [2, 3, 9, 4, 6] [5, 9, 100, 4, 4] 

10 6 5 [9, 7, 10, 2, 9] [100, 4, 7, 7, 2] 

11 4 2 [4, 5] [7, 100] 

12 6 3 [7, 6, 10] [2, 10, 100] 

13 2 3 [8, 4, 3] [100, 6, 2]] 

14 9 5 [10, 5, 6, 7, 10] [8, 100, 10, 5, 1] 

15 2 2 [7, 9] [8, 100] 

16 7 5 [10, 1, 10, 4, 1] [100, 8, 7, 3, 1] 

17 6 1 [10] [100] 

18 3 1 [4] [100] 

19 8 4 [6, 10, 5, 8] [9, 1, 8, 100] 

20 10 5 [8, 10, 3, 7, 8] [10, 100, 5, 1, 6] 

21 10 3 [8, 3, 8] [10, 9, 100] 

22 3 3 [6, 1, 9] [4, 8, 100] 

23 2 3 [3, 4, 2] [8, 100, 7] 

24 9 6 [1, 8, 6, 8, 4, 9] [3, 7, 10, 100, 4, 3] 

25 4 1 [9] [100] 

26 9 2 [5, 9, 1] [100, 9] 

27 4 3 [4, 10, 8] [100, 10, 7] 

28 8 5 [7, 10, 5, 8, 5] [3, 9, 8, 100, 2] 

29 5 5 [9, 2, 5, 2, 2] [10, 4, 7, 9, 100] 

30 5 4 [5, 4, 5, 7] [9, 100, 9, 3] 

31 9 3 [9, 6, 1] [100, 5, 1] 

Table 3. ZA vs. HPRP Methods Using Interpolation Line Search. 

Problem 
ZA HPRP 

Iter Time (sec) Iter Time (sec) 

1 12 0.0593 13 0.0634 

2 9 0.0301 9 0.0315 

3 26 0.0748 30 0.0880 

4 14 0.0354 14 0.0634 

5 37 0.1622 39 0.1745 

6 22 0.0487 25 0.0508 

7 17 0.0392 23 0.0620 

8 16 0.0224 20 0.0329 

9 14 0.0473 20 0.0727 

10 30 0.1074 32 0.1333 

11 20 0.0283 24 0.0487 

Problem 
ZA HPRP 

Iter Time (sec) Iter Time (sec) 

12 29 0.0627 26 0.0554 

13 7 0.0155 6 0.0109 

14 33 0.1148 40 0.1395 

15 10 0.0163 10 0.0162 

16 34 0.1298 26 0.1043 

17 34 0.0366 33 0.0336 

18 11 0.0093 18 0.0192 

19 22 0.0645 30 0.1020 

20 22 0.0745 23 0.0843 

21 43 0.1040 54 0.1518 

22 15 0.0334 13 0.0441 

23 9 0.0162 10 0.0231 

24 29 0.1246 36 0.1712 

25 14 0.0142 14 0.0153 

26 77 0.1415 81 0.1399 

27 17 0.0367 17 0.0380 

28 29 0.0948 36 0.1252 

29 37 0.1365 32 0.1139 

30 18 0.0544 16 0.0461 

31 42 0.0942 37 0.0878 

Table 4. ZA vs. HPRP Methods Using Exact Line Search. 

Problem 
ZA HPRP 

Iter Time (sec) Iter Time (sec) 

1 13 0.0359 12 0.0524 

2 11 0.0155 10 0.0142 

3 32 0.0369 33 0.0387 

4 20 0.0187 22 0.0221 

5 52 0.0721 51 0.0705 

6 30 0.0343 43 0.0377 

7 23 0.0257 31 0.0337 

8 32 0.0192 26 0.0165 

9 26 0.0298 26 0.0290 

10 33 0.0366 31 0.0353 

11 20 0.0141 9 0.0169 

12 39 0.0354 36 0.0310 

13 9 0.0071 9 0.0064 

14 34 0.0426 33 0.0428 

15 12 0.0071 15 0.0084 

16 32 0.0441 27 0.0371 

17 28 0.0120 33 0.0138 

18 21 0.0087 28 0.0108 

19 31 0.0359 28 0.0329 

20 25 0.0319 29 0.0404 

21 48 0.0366 50 0.0408 

22 13 0.0126 12 0.0118 

23 7 0.0066 9 0.0088 

24 31 0.0453 50 0.0779 

25 13 0.0060 19 0.0078 

26 71 0.0428 88 0.0527 

27 18 0.0169 18 0.0173 

28 40 0.0483 31 0.0396 

29 35 0.0478 29 0.0398 

30 14 0.0159 18 0.0203 

31 42 0.0398 48 0.0438 

Table 5. Comparing Success Rates on 100 Randomly Generated Problems. 

Method Line Search Success Rate (%) 

ZA Interpolation Inexact 66 

HPRP Interpolation Inexact 65 

ZA Newton’s Exact 51 

HPRP Newton’s Exact 49 
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Figure 1. Performance profile of HPRP vs ZA based on number of iterations 

and interpolation inexact line search. 

 

Figure 2. Performance profile of HPRP vs ZA based on CPU time and 

interpolation inexact line search. 

 

Figure 3. Performance profile of HPRP vs ZA based on number of iterations 

and Newton’s exact line search. 

 

Figure 4. Performance profile of HPRP vs ZA based on CPU time and 

Newton’s exact line search. 

 

Figure 5. Performance profile of ZA-Int vs ZA-Exact based on number of 

iterations. 

 

Figure 6. Performance profile of ZA-Int vs ZA-Exact based on CPU time. 
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6. Conclusion 

This work presented a concept of weighted analytic center 

for second-order cone constraints. It also showed that ZA and 

HPRP are effective conjugate gradient methods for 

computing the weighted analytic center. 

The results of our numerical experiments show that ZA 

is more effective than HPRP in both the number of 

iterations and CPU time in finding the weighted analytic 

center. The study also investigated the effect of line search 

on the performance of ZA. It is found that ZA with 

quadratic interpolation takes more time than ZA with 

Newton's exact line search. However, ZA with quadratic 

interpolation takes less iterations than ZA with Newton's 

exact line search. 

This work assumed that an interior point is available for 

each test problem. It would be of interest to study other 

methods for finding the weighted analytic center that do not 

require any interior point. This is under investigation. 
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