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Abstract: Rapid evaluation of the Faddeyeva function, also known as the complex probability function, is essential to many 

spectroscopic and stellar applications. Humlíček’s W4 Algorithm is widely used in the literature for rapid and marginally 

accurate evaluation of the function (~10
-4

). However, as reported in the literature, the algorithm lose its claimed accuracy near 

the x-axis. In this paper, we present a simple reform for treating the reported problem of loss-of-accuracy near the real axis of 

the algorithm. The reform is reached through region-borders rearrangement which is reflected as a very minor coding change 

to the original w4 algorithm that can be straightforwardly implemented. The reformed routine maintains the claimed accuracy 

of the algorithm over a wide and fine grid that covers all the domain of the real part, x, of the complex input variable, z=x+iy, 

and values for the imaginary part in the range y=∈ [10
-30

, 10
30

]. 
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1. Introduction 

Because of its applications in many fields of physics such 

as atmospheric radiative transfer, plasma spectroscopy, 

nuclear physics, nuclear magnetic resonance, etc., the 

analysis and evaluation of the complex probability function, 

commonly known as the Faddeyeva function, has gained a 

wide interest in the literature [1-25]. The function is defined 

mathematically as the scaled complementary error function 

for a complex variable and can, therefore, be expressed as, 
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where � √�1, z=x+iy is a complex argument, erfc(z) is the 

complementary error function and erfi(z) is the imaginary 

error function. The function is commonly decomposed into 

real and imaginary parts as 

��� � ��� � ���, �� � ����, ��                       (2) 

where V and L are known as the real and imaginary “Voigt 

functions,” since V(x,y) is the Voigt line profile, used in 

spectroscopy and radiative transfer, resulting from the 

convolution of the Gaussian profile (as a result of Doppler 

broadening) and a Lorentzian profile (result of pressure or 

collision broadening). The imaginary Voigt function L is also 

useful for various applications and needs to be taken into 

consideration as well. 

The fact that a closed form expression does not exist for 

the convolution integral defining the Voigt functions or for 

the closely related Faddeyeva function led to the 

development of a wide variety of algorithms to numerically 

evaluate the functions. These algorithms vary significantly in 

their accuracy and computational speed and the decision for a 

certain algorithm will depend on the particular application 

under consideration. 

One of the codes widely employed in the solution of 

practical problems requiring numerous evaluation of the 

complex probability function is the Humlíček’s w4 code [7]. 

The code is efficient for some applications tolerating low 

accuracy computations (~10
-4

), however, as shown in the 

literature (see for example [16, 25] the w4 algorithm does 

suffer from a loss of its claimed accuracy near the real axis. It 

is also worth mentioning that Humlíček’s w4 algorithm is the 

basis of several other refinements (see for example [15, 16, 

18, 23, 24]. In most of these references, Humlíček’s w4 

algorithm is shown to be remarkably more efficient when the 

parameter x is a vector while y is a scalar. Even though, a 

brief survey and benchmarking tests by Shreier [24] 
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considering practical aspects of Fortran and Python 

implementations demonstrated that programming language, 

compiler choice, and implementation details influence 

computational speed and that there is no unique ranking of 

algorithms. 

In this paper we provide a simple reform to this problem 

through region-borders rearrangement, which is reflected as a 

very minor coding change to the original w4 algorithm where 

the reformed algorithm maintains the claimed accuracy of the 

algorithm over the whole domain of interest. 

2. The W4 Algorithm and the Loss of 

Accuracy Region 

In Humlíček’s w4 algorithm, the x-y plane is divided into 

four regions where for each region an approximate expression 

is used in the form of a rational polynomial. The four regions 

used in the w4 algorithm are shown in Figure 1. The borders 

for these regions are also summarized in the second column of 

Table 1 below. The w4 algorithm calculates both the real and 

imaginary parts of the Faddeyeva function concurrently. 

Table 1. Borders of the four regions in Humlíček’s original and reformed algorithms. 

Region Original borders of the region Proposed borders of the region 

I |x|+y≥15.0 |x|+y≥15.0 

II 5.5≤|x|+y<15.0 5.5≤|x|+y<15.0 & y>10-6 

III |x|+y<5.5 & y≥ 0.195 |x|-0.176 |x|+y<5.5 & y≥ 0.195 |x|-0.176 

IV Otherwise Otherwise 

 

 

Figure 1. The four regions in the x-y plane in the Humlíček’s original 

algorithm. 

A thorough investigation of the accuracy of the w4 code 

over all of its four regions, using algorithm-916 [25] as a 

reference, shows that the accuracy failure of the w4 code 

occurs for values of y<10
-7

 and values of x in Region II. 

Figure 2 shows contour plots of the common logarithm (base 

10) of the absolute values of the relative error, in the 

calculation of the real and imaginary parts of the Faddeyeva 

function, resulting from using the w4 algorithm with 

algorithm-916 [25] as a reference.  

As pointed out by Garcia [20] the damping parameter, y, 

for the Lyman transitions of intergalactic HI spans a range of 

9.3×10
-9

 (corresponding to higher order Lyman transitions) to 

6.5×10
-4

 (corresponding to Lyα). Accordingly, this region in 

which the w4 algorithm loses its claimed accuracy is of 

practical interest to some applications. 

3. A Proposed Reform 

Interestingly a solution to the problem of the loss-of-

accuracy of the w4 algorithm near the x-axis exists in the 

reapplication of one of the approximate formulae included 

in Humlíček’s method. The approximation proposed by 

Humlíček to be used in Region IV in the w4 algorithm is 

very accurate for very small values of y. We propose using 

this expression for y≤10
-6

 and 5.5≤|x|+y<15.0 to overcome 

the loss-of-accuracy problem near the real axis. This means 

that Region IV will be extended to include this part of 

Region II as schematically shown in Figure 3. The borders 

of the modified regions are given in the third column of 

Table 1 where a simple modification of the borders of 

Region II is shown in boldface letters. This is a very simple 

and minor coding change to the original w4 algorithm that 

can be straightforwardly implemented to fix the above 

mentioned accuracy problem in such a widely used 

algorithm. 

 

Figure 2. Contour plots of the absolute relative error resulting from using 

the w4 algorithm for calculating the real and imaginary parts of the 

Faddeyeva function with algorithm-916 [25] as a reference. The thick line in 

the left part shows the contour of relative error equals 10-4 where the region 

inside this contour is the region where Humlíček’s original algorithm loses 

its claimed accuracy. 
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Figure 3. The new four regions in the x-y plane in the Humlíček’s reformed 

algorithm. 

 

Figure 4. Contour plots of the common logarithm (base 10) of the absolute 

of the relative error resulting from using the reformed w4 algorithm for 

calculating the real and imaginary parts of the Faddeyeva function with 

algorithm-916 [25] as a reference. 

Figure 4 shows contour plots similar to those in Figure 2 

but for results from using the reformed w4 algorithm where, 

as it can be seen, the claimed accuracy of the w4 algorithm is 

restored and the loss-of-accuracy problem is removed. 

In the appendix section we provide the script of the 

implementation of the reformed algorithm as a Matlab 

function with partial derivatives of the real part of the 

function added as additional outputs. The function can be 

saved as “.m” file and straightforwardly called either from 

the Matlab command window or inside any other “.m” file. A 

couple of examples of calling the function to return the 

Faddeyeva function alone and to return the Faddeyeva 

function and the partial derivatives of its real part, �� ��⁄  

and   �� ��⁄ , are given here for explanation:  

>> W4_rev(6.3+1i*1e-20) 

>> [w,dvdx,dvdy]=W4_rev(6.3+1i*1e-20) 

4. Conclusions 

A simple reform for treating the reported problem of loss-

of-accuracy near the real axis of Humlíček’s w4 algorithm is 

introduced. The reformed routine maintains the claimed 

accuracy of the algorithm over a wide and fine grid that 

covers all regions of interest. 

Appendix 

A Matlab function of the reformed W4 Algorithm with 

partial derivatives of the real part of the function as 

additional outputs. 

function [w,dVdx,dVdy] = W4_rev (z) 

w = NaN(size(z)); 

t=-1i.*z; 

x_abs=abs(real(z)); 

y=imag(z); 

s=x_abs+y; 

r1=(s>=15); 

if~isempty(r1) 

w(r1)=t(r1).*0.56418958./(0.5+t(r1).*t(r1));  

end 

r2=find(s>=5.5 & s<=15 & y>1e-6); 

if~isempty(r2) 

u = t(r2).*t(r2); 

w(r2)=(t(r2).*(1.410474+u.*0.56418958))./(.75+(u.*(3.+u)

)); 

end 

r3= (s<5.5 & y>=0.195*x_abs-0.176); 

if~isempty(r3) 

w(r3)= (16.4955 + t(r3) .* (20.20933 + t(r3) .*... 

       (11.96482 + t(r3) .* (3.778987 + 

0.5642236.*t(r3))))) ./... 

       (16.4955 + t(r3) .* (38.82363 + t(r3) .* (39.27121 +... 

       t(r3) .*(21.69274 + t(r3) .* (6.699398 + t(r3)))))); 

end 

r4=find(s<5.5 && y<(0.195*x_abs-0.176) || (s>=5.5 && 

s<=15 && y<=1e-6)); 

if~isempty(r4) 

u=t(r4).*t(r4); 

w(r4)= exp(u) - (t(r4).*(36183.31-u.*(3321.99-u.*... 

       (1540.787-u.*(219.031-u.*(35.7668-u.*(1.320522-

u.*.56419)))))))./... 

       (32066.6-u.*(24322.8-u.*(9022.23-u.*... 

       (2186.18-u.*(364.219-u.*(61.5704-u.*(1.84144-

u))))))); 

end 

%-------Calculations of partial derivatives 

dVdx=-2*real(z.*w);  % Partial derivative of real(w) w.r.t. 

x 

dVdy=2*imag(z.*w)-1.128379167095513; % Partial 

derivative of V w.r.t. y 

%dLdx=-dVdy; dLdy=dVdx; % Partial derivatives of L 

w.r.t. x&y 
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