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Abstract: Binomial model is a powerful technique that can be used to solve many complex option-pricing problems. In 

contrast to the Black-Scholes model and other option pricing models that require solutions to stochastic differential 

equations, the binomial option pricing model is mathematically simple. It is based on the assumption of no arbitrage. The 

assumption of no arbitrage  implies that all risk-free investments earn the risk-free rate of return and no investment 

opportunities exists that requires zero amount of investment but yield positive returns. It is the activity of many individuals 

operating within the context of financial market that, in fact, upholds these conditions. The activities of the arbitrageurs or 

speculators are often maligned in the media, but their activities insure that financial markets work. They insure that 

financial assets such as options are priced within a narrow tolerance of their theoretical values. In this paper we use 

binomial model to derive the Black-Scholes equation using the risk-neutral expectation formula. We also use binomial 

model for the valuation of European and American options. Lastly, the primary reason why the binomial model is used is its 

flexibility compared to the Black-Scholes model and it is also used to price a wide variety of options. 
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1. Introduction 

Options have been considered to be the most dynamic 

segment of the security markets since the inception of the 

Chicago Board Options Exchange (CBOE) in April, 1973 

with more than one million contacts per day, CBOE is the 

largest business option exchange in the world. After that, 

several other option exchanges such as London 

International Financial Futures and Options Exchange 

(LIFE EURONEXT) had been set up. 

Option is a major financial derivative, it gives the holder 

of that options the right, but not the obligation to trade a 

fixed amount of underlying asset at an agreed-upon price 

on the maturity date (European option) or anytime on or 

before the maturity date (American option). A call option 

gives the holder the right but not the obligation to buy; a 

put option gives the holder the right but not the obligation 

to sell. 

Over the last a few decades, due to the famous Black and 

Scholes work, option valuation has gained a lot of attention. 

In Black and Scholes [2] seminar paper, the assumption of 

log-normality was obtained and its application for valuing 

various ranges of financial instruments and derivatives is 

considered essential. 

Options form the foundation of innovative financial 

instruments which are extremely versatile securities that 

can be used in different ways. Over the past decade, option 

has been developed to provide the basis for corporate 

hedging and for the asset/liability management of financial 

institutions. 

Option pricing theory has a long history, but it was not 

until Black and Scholes presented the first complete 

equilibrium option pricing model in the year 1973. 

Moreover, in the same year, Robert Merton extended the 

Black-Scholes (BS) model in several important ways. Since 

its invention, the BS model has been widely used by traders 

to determine the price for an option. However, this famous 

formula has been questioned after the 1987 crash. 

Following the Black-Scholes option pricing model in 

1973, a number of other popular approaches was developed 

such as binomial tree model by Cox-Ross-Rubinstein [9], 

Jump diffusion model suggested by Merton [17], the Monte 
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Carlo simulation method developed by Boyle [6] and finite 

difference method to price the derivative governed by 

solving the underlying partial differential equation by 

Brennan and Schwartz [7] just to mention a few. 

The complexity of option pricing formulas and the 

demand of speed in financial trading market require fast 

ways to process these calculations; as a result of this the 

development of computational methods for option pricing 

models can be the only solution. 

Even in the 70’s Black-Scholes calculator is a must for 

option traders. As well as the option market, computing the 

industry developed dramatically since 1970s. Computer 

calculation speed is getting faster and faster today. 

Speculate option traders are using a selection of software 

applications to run the option pricing models to price the 

derivative, then compare the market price to looking for the 

mispricing opportunity to invest and act quickly in order to 

make a profit. 

A considerable amount of empirical evidence in 

literature suggesting that the Black-Scholes which assumes 

asset returns follow continuous diffusion process with 

constant conditional volatility is inconsistent with the 

statistical properties of many asset prices. Implied 

volatilities calculated by reverting Black-Scholes model are 

higher for deep in-the-money and out-of-the-money options, 

the existence of volatility smile indicates the mispricing 

problem. 

Many researchers have challenged the validity of Black-

Scholes model using the empirical tests which were based 

on the historical data set, this motivated us to produce an 

application to apply the real-time market quote data to 

apply for the Black-Scholes model, and then compare the 

output price with the market option price quote at that time 

point. 

For exhaustive or relevant literatures on option pricing 

see [1], [3], [4], [5], [8], [10], [11], [12], [13], [14], [15], 

[16], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27] 

and [28].  

1.1. Definition of Some Basic Terms 

This section presents some definition of terms as follows: 

1.1.1. Financial Derivative 

A financial derivative also known as a derivative security 

can be defined as a financial instrument whose value 

depend on (or is derived from) the value of other more 

basic underlying variables or security. 

1.1.2. Options 

It can be defined as a financial contract or derivative that 

represents a contract sold by one party (option writer) to 

another party (option holder). The contract offer the buyer 

the right but not the obligation to buy (call) or sell (put) a 

security or other financial asset at an agreed upon price (the 

strike price) during a certain period of time. 

1.1.3. Call Option 

This gives the holder of the option the right to buy the 

underlying asset or security at a specified price for a certain 

fixed period of time. Call option gives the option to buy at 

a certain price and so the buyer would want the stock to go 

up. The European call option payoff can be expressed as: ����� , �� = ��� − ��+ �ℎ���	� = ����	��	������ 					� = ������	����� 

1.1.4. Put Option 

This gives the holder of that option the right to sell the 

underlying asset or security at a specified price for a certain 

fixed period of time. This gives the option to sell at a 

certain price so the buyer would want the stock to go down. 

The European put payoff P���� can be expressed as ����� , �� = �� − ���+  �ℎ���	� = ����	��	������ 				� = ������	����� 

1.1.5. At-The-Money 

An option is at-the-money, if the strike price of the 

option is equal to the market price of the underlying 

security. 

i.e. if � = �, then option is at the money 

1.1.6. In-The-Money 

A call option is in-the-money if the strike price is less 

than the market price of the underlying security. A put 

option is said to be in-the-money if the strike price is 

greater than the market price of the underlying security. 

1.1.7. Out-of-The-Money 

A call option is out-of-the-money if the strike price is 

greater than the market price of the underlying security. A 

put option is out-of-the-money if the strike price is less 

than market price of the underlying security. 

1.1.8. Hedgers 

Hedge can be defined as a conservative strategy used to 

limit investment loss by effecting a transaction which 

offsets an existing position. Hedgers are risk-reducers and 

as hedge is a trade designed to reduce risks. 

1.1.9. Arbitrageur 

Arbitrage can be defined as a trading strategy that takes 

advantage of two or more securities being mispriced 

relative to each other. An arbitrageur takes no risk in 

making profit. 

1.1.10. Speculator 

This is an individual that takes a position in the market. 

Usually the individual is betting that the price of an asset 

will go up or that the price of an asset will go down. 

1.1.11. Payoff 

This is defined as the cash realized by the holder of an 

option or other derivative at the end of its life. 
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1.2. Ito’s Formula 

We considered a function f depending on the asset price ��  and time t. If the asset price S were a deterministic 

variable, we would simply expand ���� + ∆�, ∆��  at ���, 0� in Taylor series: 

∆� = "#$#� ∆� + %& #'$#�' ∆�& +⋯) + "#$#* ∆� + %& #'$#*' ∆�& +⋯) +⋯ (1.1) 

The Ito’s calculus is a stochastic process equivalent to 
Newtonian differentiation calculus. In the limit ∆� →0, terms ∆�  of higher order than 1 as in the ordinary 

differential calculus are considered small and can be 
omitted. 

In case of lognormal random walk we can write that  

∆� = ��,∆� + ��-.∆�	/                       (1.2) 

because ∆�	 depends on ∆� in case of random process. Then 

consider 

	�∆��& = ���,∆� + -.∆���/�&                   (1.3) 

since Z is standard normal, Z&  is distributed with gamma 

distribution with mean 1. 

Therefore 12�-√∆�/ − -&��∆��&4  
(1.4) = -&��∆�15/&6 + 0 "�7 &8 ) = -&��∆� + 0 "�7 &8 )	 

In the limit	∆� → 0 =�%& = -&�&�=�                                (1.5) 

Therefore if f is a function dependent on �� , it is also a 

stochastic process �� such that  

=�� = #$#� =� + #$#> =�� + %&-&��& #'$#>' =�               (1.6) 

Or writing out	=��, we obtain Ito’s formula for the option, 

given the underlying asset is a stochastic process with =�� = ,��=� + -��=�  

(1.7) =�� = ?�?� -=�� + @?�?� + ,�� ?�?�+ 12 -&�&� ?&�?�&C =� 
The stochastic variable =��  present in the formula 

means that the option price ���� , �� also moves randomly. 

2. The Binomial Model 

This is defined as an iterative solution that models the 

price evolution over the whole option validity period. For 

some vanilla options such as American option, iterative 

model is the only choice since there is no known closed 

form solution that predicts its price over a period of time. 

Black-Scholes model seems dominated the option 

pricing, but it is not the only popular model, the Cox-Ross-

Rubinstein “Binomial” model has also a large popularity. 

The Cox-Ross-Rubinstein “Binomial” model has the 

Black-Scholes analytic formula as the limiting case as the 

number of steps tends to infinity. 

Cox-Ross-Rubinstein [9] presented the binomial tree 

model in paper, “Option Pricing: A simplified approach” in 

1979. The model is relatively simple and easy to 

understand, but it is an extremely powerful tool for pricing 

a wide range of options. They found a better stock 

movement model other than the geometric Brownian 

motion model applied by Black and Scholes, the binomial 

tree model. The tree specifies precisely all the possible 

future stock prices and the associated possibilities to obtain 

those prices. 

The rate of return on the stock over each period can have 

two possible values: D  with possibility E,  or =  with 

probability �1 − E�. Thus, if the current stock price is �, the 

stock price at the end of the period will be either �D	or �=. 

The binomial model of the stock price movements is a 

discrete time model as opposed to the geometric Brownian 

motion model, which is a continuous time model. 

2.1. Vanilla options 

This is defined as a financial instrument that gives the 

holder of that option the right but not the obligation to buy 

or sell an underlying asset at a predetermined price within a 

given time frame. In other words, vanilla option is a normal 

call or put option that has standardized terms and no special 

or unusual features. It is generally traded on an exchange 

such as the Chicago Board Options Exchange. Examples of 

vanilla options are the American and European option. 

2.1.1. American Option 

This is defined as an option which can be exercised at 

any time up to and including the expiry date of the option. 

This added flexibility over European options results in 

American options having a value of at least equal to that of 

an identical European option, although in many cases the 

values are very similar as the optimal exercise date is often 

the expiry date. 

2.1.2. European Option 

This is defined as an option which is only exercisable at 

the expiry date of the option and can be valued using 

Black-Scholes option pricing formula. There are only five 

inputs to the classic Black-Scholes model: Spot price, 

Strike price, time until expiry, Interest rate and volatility. 

As such European options are typically the simple option to 

value. The dividend or yield of an underlying asset can also 

be an input to model. The term European option is confined 

to describing the exercise feature (i.e exercisable only on 

the expiry date) of the option and does not describe the 

geographic region of the underlying asset. 
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2.2. Binomial Model, an Alternative for Deriving Black-

Scholes Model 

In this section, we will show that given the risk neutral 

binomial process, we can derive the Black-Scholes 

equation from the risk-neutral expectation formula given 

below: G� = �HI�1J5�6                             (2.1) 

Consider the single period binomial model. Let the 

current underlying price of the asset be �. The risk neutral 

expectation is given below: 1J5G��, 0�6 = EG��D, ∆�� + �1 − E�G5�=, ∆�6   (2.2) 

Expand G��D, ∆�� in Taylor series: G��D, ∆�� = G�� + ��D − 1�, ∆�� 
= G��, ∆�� + GK��, ∆����D − 1� + 12GKK��, ∆���&�D − 1�& + 0�D7�. 

Expand G��=, ∆�� in Taylor series: G��=, ∆�� = G�� + ��= − 1�, ∆�� 
= G��, ∆�� + GK��, ∆����= − 1� + 12GKK��, ∆���&�= − 1�& + 0�=7�. 

Put the values of G��D, ∆��  and G��=, ∆��  in equation �2.2� we have 

 

1J5G��, 0�6 

(2.3) 

= E LG��, ∆�� + GK��, ∆����D − 1� + %&GKK��, ∆���&�D − 1�& + 0�D7�M  
+�1 − E� LG��, ∆�� + GK��, ∆����= − 1� + %&GKK��, ∆���&�= − 1�& + 0�=7�M,  

= E LG��, ∆�� + �DGK��, ∆�� − �GK��, ∆�� + %&D&GKK��, ∆���& + %&GKK��, ∆���& − DGKK��, ∆���&M  
					+�1 − E� LG��, ∆�� + GK��, ∆��=� − �GK��, ∆�� + %& =&GKK��, ∆���& + %&GKK��, ∆���& − =GKK��, ∆���&M  
= E	G��, ∆�� + �DGK��, ∆��E − 	�GK��, ∆��E + %& D&GKK��, ∆���& − 	DGKK��, ∆���& + 	G��, ∆��+GK��, ∆��=�  

				−	�GK��, ∆�� + %& =&GKK��, ∆���&+
%&GKK��, ∆���& − 	=GKK��, ∆���& − E	G��, ∆��  

			−E=GK��, ∆��� + EGK��, ∆��� − %& E=&GKK��, ∆���& − %& EGKK��, ∆���& + 	E=GKK��, ∆���&  

= 	G��, ∆��+GK��, ∆���5E�D − 1� − �1 − E��= − 1�6 + 12GKK��, ∆���&�D − 1�& + 0�D7�		 
We will use the equality  ED + �1 − E�= = �I∆� , 
And by risk neutral argument, this must be equal to  G��, 0��I∆� = G��, 0��1 + �∆�� + 0�N�&� 

																						= G��, ∆�� + GK��, ∆���5�I∆� − 16 
				+ 12GKK��, ∆���&�D − 1�& + 0�D7� 

																				= 	G��, ∆�� + GKK��, ∆����∆�	 
	+ 12GKK��, ∆���&-&∆� + 0 "∆�7 &8 ) 

By the risk neutral argument, this must be equal to  G��, 0��I∆� = G��, 0��1 + �∆�� + 0�N�&�  
Rearranging  

G��, ∆�� − 	G��, 0� + %& �&-&GKK��, ∆�� + ��GK��, ∆��∆�   (2.4) 

When limit ∆� → 0,	we will finally get the Black-Scholes 

partial differential equation 

#O#$ + %& �&-& #'O#*' + �� #O#* − �G = 0                (2.5) 

2.3. Binomial Asset Price Process 

The binomial model starts out with an extremely simple 

two state market model shown in the diagram below: 
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Figure 1. One Period Binomial Model 

If �� is the spot price of a risky asset at time � = 0 after 

some period of time 	� , it can only assume two distinct 

values. ��D and ��=, where u and d are real numbers such 

that D > = . Moreover we will assume the existence of a 

riskless asset with a constant yield r. 

Thus, we can say that an investment of ��  dollars at 

time � = 0  yields ���I�  dollars at time � = �. The no 

arbitrage argument is also valid here, we must require that  ��= < ���I� < ��D or = < �I� < D  

If it is time, then it means that a riskless investment can 
be better, worse or even as well as a risky investment. If 
this is not time, then the risky asset is not risky at all. If           �I� < = < D,	one would never prefer the risk-free asset to 

the risky asset; borrowing R units of money at the risk-less 

rate � and buying the risky asset would yield a profit of at 

least R�= − �I�� > 0  at time 	� = � . If �I� = =  such a 

market position (long asset, short bond) would yield a 

positive value. If �I� ≥ D  then market position will be 

reversed (long bond, short asset) yield a positive value. 

Suppose now that the option yields �T and �U , the 

underlying asset go up and down respectively. 

Consider a portfolio consisting of ∆  units of the risky 

asset (e.g a stock) and R  units of risk-less asset (e.g a 

money market account) forms a replicating portfolio ∆��D + R�I� = �T                            (2.6) ∆��= + R�HI� = �U	                            (2.7) 

This is a system of two equations with two unknowns �∆, R�  i.e there is a unique solution exist if and only if D ≠ = 

∆= $WH$X*YTH*YU		                                   (2.8) 

R = �HI� T$XHT$WTHU 	                                 (2.9) 

Since the option payoff at � = � is equal to that of this 

portfolio, the value of the portfolio must be equal to that of 

the option. Let’s say the present value of the option is G� G� = ∆�� + R 

Putting the values of ∆	and R, we will get 

G� = $WH$X*YTH*YU �� + �HI� T$XHT$WTHU   

				= $WH$X*Y�THU� �� + �HI� T$XHU$WTHU   

= $WH$XTHU + �HI� T$XHU$WTHU  b  

Thus,  

G� = $WH$XZ[\]^�T$XHU$W�THU                        (2.10) 

We introduce a new variable  

E = �I� − =D − =  

The value of the option at � = 0 can be expressed as  G� = �HI�5E�T + �1 − E��U6		               (2.11) 

The no arbitrage argument guarantees that 0 < E <1.	Thus the value of the option reduces to a certain kind of 

expectation formula  G� = �HI�1J5�6, 
where the expectation is taken under the probability 

measure given by E.	This measure has the special property 

that if G� is the value of option at � = �, 1J5G�6 = �∆�� + R��I� , 1J5G�6 = G��I� 

This probability measure is called risk-neutral 

probability measure. 

2.3.1. Multi-Period Binomial Model 

Multi-period binomial models applied to the same total 

period of time � = _∆� as the number of periods increased, 

time step ∆� → 0  the distribution of �log�� − log��� 	 
approaches to normal distribution. In multi-period model 

the expiry of the option � is divided into two equal time-

steps � = 2∆�, a risky asset moves upward by a factor of D 

and downward by a factor of =. 

 

Figure 2. Two and Three Period Binomial Models 

Thus recombining binomial tree has the end asset 

values 	���D&, ��D=, ��=&�  at time � = � = 2∆�.	 Suppose 

now the option payoff function is ���, ��.   The three 

options at � = � are given by �T = ����D&� �b = ����D=� �U = ����=&� 
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Assuming the no-arbitrage and risk-neutral, we can 

apply the following formula G� = �HI�5E�T + �1 − E��U6  
to each of the individual branches in this tree to obtain a 

value for the option step by step. At time � = 2∆�, we will 

get either of the two values of the option G% = �HI�5E�T + �1 − E��b6              (2.12) G% = �HI�5E�T + �1 − E��U6              (2.13) 

Applying the formula once again G� = �HI∆�cEG%KK + �1 − E�G%Ud          (2.14) 

Inserting the values of G%T , G%U we can write this as 

G� = �HI�5E&����D&� + E�1 − E����D=�����=&�6,  
(2.15) G� = �HI� ∑ Ef�1 − E�	&Hf&fg� ����Df=&Hf�  

For the N-period model, where� = _∆�, we obtain  

G� = �HI� ∑ "hf) Ef�1 − E�	&Hfhfg� ����Df=&Hf�   (2.16) 

The payoffs at each node in the N-period model can be 

expressed as function of the payoffs in _ + 1 period model: ����Df=iHf�  
(2.17) = �HI∆� "E�j��DfZ%=hHfk+ �1 − E��j��Df=hZ%Hfk) 

Substituting equation �2.17� into equation �2.16� G� = �HI��Z∆��EhZ%����Dh�  
										+�HI��Z∆��nop_q C

h
fg% + p _q − 1Cr "Ef�1 − E�	hHf�j��Df=hHfk) 

								+�HI��Z∆���1 − E�	hZ%����=h� 
As we know  

"hf) + " hfH%) = "hZ%f ).  
The above equation then becomes: 

G� = ��HI�hZ%�∆�� ∑ "hZ%f ) Ef�1 − E�	hZ%Hf�hZ%fg� j��Df=hZ%Hfk 
(2.18) 

which confirms that formula is also valid for _ + 1-period 

model. By the principle of induction, a formula in equation 

(2.18) is true for _-period nodes. 

2.3.2. Approximating Continuous Time Prices with 

Discrete Time Models 

The _ -period model in the previous section is for 

discrete model, while the Black-Scholes derived by 
stochastic differential equation was continuous, what would 

happen if _ → ∞	or ∆� → 0? 

Consider the value of the underlying asset (the stock) 

after t  periods has passed. There has been a random 

number say  ui, ‘up-jumps’ and t − ui, ‘down jumps’ the 

value of asset is then  �i = ��Dvw=�iHvw�			                   (2.19) 

The log normal process introduced involves a stock 

price �� = ���vx , where u�  is given by its differential 

equation, it is a stochastic process with drift ,�  and 

variance-&�. 
Then the value of D, = will be the following  

D = �y∆�Zz√∆� 
= = �y∆�Hz√∆� 

It is clear that 	= < D , if we assume that arbitrage 

requirement	= < �I� < D satisfies then the asset price after t periods will be  

�i = ���jy∆�Zz√∆�k�hH{w�                    (2.20) 

�i = ���y�Z�&{wHi�z√∆�                      (2.21) 

If the limit t → ∞, then ,� + �2�i − t�-√∆� → �i? If 

it does, the binomial model can be used for approximating 
the lognormal process.  

By using the values of D, = we can write E as  

E = []∆xHUTHU   

(2.22) E = �I∆� − �y�Hz√∆��y�Zz√∆� − �y�Zz√∆� 
Expanding the denominator and numerator in Taylor 

series 

E = I∆�H"y∆�Hz√∆�Z}'z'∆�)Z�"∆�~ '8 )"y∆�Zz√∆�Z}'z'∆�)H"y∆�Hz√∆�Z}'z'∆�)Z�"∆�~ '8 )	  
(2.23) 							E = z√∆�Z"IHyH}'z')∆�Z�"∆�~ '8 )&z√∆�Z�"∆�~ '8 )   

								E = %&+ IHyH}'z'z √∆� + 0�∆��  
The random component of �iis  

���i� = �2�i − t�-√∆�  = �2�i − t�-��i  = �&{wHi�√i -√�  
Let  
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�i = �&{wHi�√i   

Now we will find the mean and variance of �i. ui can be described as sum of t independent Bernoulli 

random variables i.e random variables denoting the number 
of heads in flips of a coin, here the coin is a risk neutral 

coin with probability of heads equal to E. 

The mean of �i  is tE and the variance of �i	is tE�1 −E. 

The mean of �i is then  

15�i6 = �&�5{w6Hi�√i = &iJHi√i = i�&JH%�√i = �2E − 1�√t  

Put the value of E in the above equation and we will get 

the mean of �i: 

15�i6 = √�"IHyH}'z')z + 0�∆��  
The variance of �i is  

G��5�i6 = G�� L&{w√i M = ���I{wi = �iJ�%HJ�i = 4E�1 − E�  
Put the value of E in the above equation and we will get 

the variance of �i G��5�i6 = 1 + 0�∆��                       (2.24) 

In the limit _ → ∞, ∆� → 0  then �i-√�  tends to a 

stochastic process ��  distributed normally with mean "� − , − %&-&) � and the variance -&�.	 We can write this as  

�� = "� − , − %&-&) � + -��  
where ��  is a Brownian motion we have shown that the 

discrete random process �i = ���y�Z�&{wHi�z√∆�  can be 

converted to continuous stochastic process	�i = ���y�Z�x  
Let u� = ,� + �� ,		then we obtain  

u� = "� − %&-&) � + -��                   (2.25) 

We can thus approximate lognormal asset price process 

with binomial model by setting  

D = �"IH}'z')∆�Zz√∆�                       (2.26a) 

= = �"IH}'z')∆�Hz√∆� 	                       (2.26b) 

E = []∆xHUTHU                                   (2.26c) 

Let us now find	=u� , apply Ito’s calculus to the above 

equation �2.25� 
=u� = "� − %&-&) =� + %&-&=� + -=��   
=u� = �=� − %&-&=� + %&-&=� + -=��   

=u� = �=� + -=��  
This implies that in the risk neutral world the stochastic 

differential equation is  =u� = ,=� + -=�� as drift , = �. 

In other words  15=��6 = 15,=� + -=��6  1 LU>x*Y M = �=� or 15��6 = ��15�vx6  15��6 = ���I�  
The price of the stock is expected to grow at the risk-

neutral rate r. 

2.3.3. The Binomial Parameters 

Here we will show the parameters of binomial model for 

continuous time prices using the lognormal price process. 

Consider the binomial parameters which are defined in 

equation  D = �"IH}'z')∆�Zz√∆� , = = �"IH}'z')∆�Hz√∆�  and E =[]∆xHUTHU  which are not only possible ways to construct a risk 

neutral binomial tree. The lognormal model is fully 
specified by the mean and variance of the random variable, �� = ���v^ 	 or �v^ = *^*Y 		,	 where u�  is given by u� ="� − %&-&) � + -��. The variance of �v^ 	is: 

���5�v^6 = 15��v^�&6 − 15�v^6& 

(2.27) 							= 15�&v^6 − 15�v^6& 

where �v^ 	has mean �I�	 as shown in equation	�2.27�. To 

find the mean	�&v^, we apply Ito’s calculus: 

u� = "� − %&-&) � + -��, then 

2u� = 2"� − %&-&) � + 2-��  
To find =u� =u� = 2"� − %&-&) =� + %& �2-�&=� + 2-=�� ,  

(2.28) 
=u� = 2�=� − -&=� + %& �4-&�	=� + 2-=�� ,  

=u� = 2�=� − -&=� + 2-&=� + 2-=�� ,  
=u� = �2� + -&�=� + 2-=�� . 

It means �&v^	has mean �j&IZz'k�  and the variance of �v^ is given below: 

���5�v^6 = �&I�Zz'� − 15�v^6&            (2.29) 
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Since�v^ = *^*Y , thus we can write the mean and the 

variance as 

1 L*^*YM = �I�                             (2.30) 

��� L*^*YM = �j&IZz'k� − 1 L*^*YM&                  (2.31) 

We will apply mean and variance to one period binomial 

model with � = ∆�  and limit ∆� → 0.	 In this model, the 

mean and variance are given below: 

1 L*^*YM	 = ED + �1 − E�=                      (2.32) 

��� L*^*YM	 = ED& + �1 − E�=& − 1 L*^*YM&            (2.33) 

Comparing equations �2.30� and �2.32� we have that �I� = ED + �1 − E�=,  
where � = ∆�, then ED + �1 − E�= = �I∆� . 

Again comparing equations �2.31� and �2.33� we have 

that 

ED& + �1 − E�=& − 1 L*^*YM& = �j&IZz'k� −1 L*^*YM&,  (2.34) 

ED& + �1 − E�=& = �j&IZz'k� 

Here again � = ∆�  
ED& + �1 − E�=& = �j&IZz'k∆�	               (2.35) 

But 

 �j&IZz'k∆� = �&I∆�Zz'∆�                    (2.36) 

Therefore we have the following:  ED	 + �1 − E�=	 = �I∆�                    (2.37) 

ED& + �1 − E�=& = �&I∆�Zz'∆�                    (2.38) 

Now we have two equations with three unknown 

variables, one variable can be chosen. 

For example, E = %& 
Putting the value of E = %& in equation �2.37� yields 

%& D + "1 − %&) = = �I∆�                        (2.39) 

%& D + %& = = �I∆�                            (2.40) 

%& �D + =� = �I∆�                           (2.41) 

Equation (2.41) becomes; �D + =� = 2�I∆�                             (2.42) 

Again substituting the value of E = %&  into equation �2.38� 
%& D& + "1 − %&) =& = �&I∆�Zz'∆� 	            (2.43) 

%& D& + %& =& = �&I∆�Zz'∆�                    (2.44) 

%& �D& + =&� = �&I∆�Zz'∆�                     (2.45) 

Hence (2.45) yields; �D& + =&� = 2�&I∆�Zz'∆�                   (2.46) 

Now again we have two equations  �D + =� = 2�I∆�                         (2.47) 

�D& + =&� = 2�&I∆�Zz'∆� 	                   (2.48) 

From (2.47) and (2.48) we can get the value of D, = 

which are given below: 

D = �I∆� "1 + .�z'∆� − 1)                     (2.49) 

= = �I∆� "1 − .�z'∆� − 1)                      (2.50) 

This proves that the binomial model approximates the 

lognormal price process. In the sequel we consider the 

convergence of the binomial option pricing model to the 

analytic option pricing model called “Black-Scholes Model” 

as follows: 

2.4. Convergence of the Binomial Model to the Black-

Scholes Model 

The Black-Scholes formula for pricing European call 

option is given by ��|�� = ��Φ�=%� − ��|���HI�Φ�=&�	                   (2.51) 

where Φ�=� denotes the value of the cumulative Normal 

distribution function i.e the probability that / ≤ =  when /~_�0,1� is a standard normal variable and where  

=% = ��j*Y��^|Y� �kZjIZz' &⁄ k�z√� 	                           (2.52) 

=& = ��j*Y��^|Y� �kZjIHz' &⁄ k�z√� = =% − -√�		                   (2.53) 

We can show that as the number t of the subintervals of 

the finite period 50, �6 increases indefinitely, the binomial 

formula for the value ��|�� of the call option converges on 

Black-Scholes formula. We may begin by simplifying the 

binomial formula. Observe that for some outcomes there is 

 ���j��Df=iHf − ��|��k = 0			                    (2.54) 

Let a be the smallest number of upward movements of 

the underlying stock price that will ensure that the call 

option has a positive value, which is to say that it finishes 
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in-the-money. Then ��D�=iH� = ��|�� ; and only the 

binomial paths from q = � onwards needs to be taken into 

account. Therefore the equation for the generalization t-

sub periods i.e. ��|�� =�HI� �∑ i!�iHf�!f!ifg� �f�1 − ��iHf�Tf,U�iHf��  
(2.55) 

										= �HI�1j��|��k	  
Equation (2.55) can be written as; ��|��	  

(2.56) = �HI� �∑ i!�iHf�!f!ifg� �f�1 − ��iHfc��Df=iHf −��0  

��|�� = ����HI� ∑ i!�iHf�!f!ifg� �f�1 −�t−qDq=t−q  
(2.57) 

															−��|���HI� �∑ i!�iHf�!f!ifg� �f�1 − ��iHf�  
To demonstrate that this converges to equation �2.51�	as	t → ∞, it must be shown that the terms in (2.57), 

(2.46) is associated with ��  and 	��|���H�� , converge to Φ�=%� and Φ�=&� respectively. 

The term associated with ��|���HI�  is a simple binomial 

sum; and in the limit as	t → ∞, it converges to the partial 

integral of a standard normal distribution. The term 

associated with �� can be simplified so that it becomes a 

binomial sum that converges to a normal integral. Define 

the growth factor �  by the equation �i = �H�� ,  then in 

reference to the equation that: 

� = [^^HUTHU 	�t=	1 − � = TH[^^THU                    (2.58) 

It can be seen that within the context of the t-period 

binomial model, there is  

� = �HUTHU 	�t=	1 − � = TH�THU		                   (2.59) 

Now define: �∗ = T��  and 1 − �∗ = U�%H��� 	 
Then the term associated with �� can be written as 

∑ i!�iHf�!f!ifg� �∗f�1 − �∗�iHf                   (2.60) 

The task is now to replace the binomial sums as t → ∞ 

by corresponding partial integrals of the standard normal 

distribution. 

First observe that the condition ��D�=iH� ⋍ ��|�� can be 

solved to give  

� = ��j�^|Y�|*Y �kHi �� U���T U⁄ � + 0"tH% &8 )                   (2.61) 

Next let �� = ��Df=iHf  be the stock price on expiry. 

This gives  ln���|�� �� = q ln�D =⁄ � + 	t ln =	                   (2.62) 

From which  1 ln���|�� ��¡ = 1�q� ln�D =⁄ � + 	t ln =	                (2.63a) 

and  G ln���|�� ��¡ = G�q� ln�D =⁄ �¡&                (2.63b) 

The equations (2.63a) and (2.63b) are solved to give 

respectively 

1�q� =  ���*^|*Y ��¡H	i �� U���T U⁄ �                     (2.64a) 

and 

G�q� = O ���*^|*Y ��¡ ���T U⁄ �¡' 	                          (2.64b) 

Now, the value �, which marks the first term in each of 

the binomial sums must be converted to a value that will 

serve as the limit of the corresponding integrals of the 

standard normal distribution. 
The standardized value in question is = = − � − 1�q�¡ .G�q�⁄  to which a negative sign has been 

applied to ensure that the integral is over the interval �−∞, �=6�  which accords with the usual tabulation of the 

cumulative normal distribution instead of the interval 

toj– =, �∞6�, which would correspond more directly to the 

binomial summation from �	to t. 

Substituting (2.61), (2.64a) and (2.64b) into the 

expression for = gives 

= = H �H��f�¡.O�f� = ��j*Y��^|Y� �kZ� ���*^|*Y ��¡.O ���*^|*Y ��¡ − 0"tH% &8 )   (2.65) 

As t → ∞, the term of order tH% &8  vanishes. Also the 

trajectory of the stock price converges to a geometric 
Brownian and from the note on continuous stochastic 
processes, we can gather the result that G ln���|�� ��¡ =-&�. This is regardless of the size of the drift parameter ,, 

which will vary with the values �	and �∗. Therefore in the 

limit there is  

= = ��j*Y��^|Y� �kZ� ���*^|*Y ��¡z√�                         (2.66) 

It remains to show that  

1 ln���|�� ��¡ = £�� − -& 2⁄ ��	��	�ℎ�	���¤�¤�¥���	��	D	��	�,�� + -& 2⁄ ��	��	�ℎ�	���¤�¤�¥���	��	D	��	�∗	� 
(2.67) 

First, we consider 	��|�� � = ∏ ��§ �§H%⁄ �i§g% , where �i  is 

synonymous with ��. Since this is a product of sequence of 

independent and identically distributed random variables, 
there is 1���|�� �� = ∏ ��§ �§H%⁄ �i§g% =  1��§ �§H%⁄ �¡i		   (2.68) 
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Moreover, since �§ �§H%⁄ = D  with probability �  and �§ �§H%⁄ = ¨ with probability �1 − ��, the expected value 

of this ratio is �1��§ �§H%⁄ � = �D + �1 − ��¨= � 	�               (2.69) 

where the second equality follows in view of the definitions 

of 2.58. Putting this back into �2.68� gives  1���|�� �� = �i	�t=	 ln 1���|�� ��¡ = t ln�	         (2.70) 

It follows from a property of the lognormal distribution 

that  

ln 1���|�� ��¡ = 1 £ ln���|�� ��¡ + %&G ln���|�� ��¡©	   (2.71) 

This is rearranged to give 

�1 ln���|�� ��¡ = ln 1���|�� ��¡ − %&G ln���|�� ��¡	= �� − -& 2⁄ �� 	ª    (2.72) 

The final equality follows on recalling the definitions 

that �i = �I� and that G ln���|�� ��¡ = �-&. This provides 

the first equality of 2.67 

Now in pursuit of the second equality of �2.67� we must 

consider ���|�� �� = ∏ ��§H% �§⁄ �i§g%  which the inverse of the 

ratio in question is. In the manner of �2.68�, there is  1���|�� �� = ∏ ��§H% �§⁄ �i§g% =  1��§H% �§⁄ �¡i      (2.73) 

However the expected value of the inverse ratio is  

�1��§H% �§⁄ � = �∗DH% + �1 − �∗�¨H%	�H% 	©                (2.74) 

which follows in view of the definitions of �∗ and 1 − �∗of �2.59�. Putting this back into �2.73� gives 1���|�� �� = �Hi	�ℎ�t��	 ln 1���|�� ��¡ = t ln�    (2.75) 

Now the object is to find 1 ln���|�� ��	¡	 from ln 1���|�� ��¡. The property of the log normal distribution 

that gave 2.71 now gives 

�ln 1���|�� ��¡ = 1 £ ln���|�� ��¡ + %&G ln���|�� ��¡©	= −1 £ ln���|�� ��¡ + %&G ln���|�� ��¡©	 	¬   

(2.76) 

Here the second equality follows from the inversion of 

the ratio. This involves a change of sign of its logarithm, 

which affects the expected value on the RHS but not the 

variance. Rearranging the expression and using the result 

from 2.75 gives  

						�1 ln���|�� ��¡ = t ln� + %&G ln���|�� ��¡	= �� + -& 2⁄ �	 	ª.         (2.77) 

This provides the second equality of 	�2.67�. 

3. Numerical Implementation and 

Examples 

This section presents the implementation of binomial 

model for pricing vanilla options and examples as follows: 
A1 The stock price ��§ at �� over time step N� can only 

take two possible values: either go up to ��§D or go 

down to ��§= at �§Z% with 0 < = < D where D is the 

factor of upward movement and = is the factor of 

downward movement. 

A2 The probability of moving up between time �§ and �§Z%  is �  and therefore the probability of moving 

down is �1 − �). 

A3 1j��§Z%���§k = ��§�I­�                                      (3.1) 

The probability � does not reflect the true probability of 

a stock moving up. It is an artificial probability reflecting 

the assumption A3. From assumptions A1 and A2, we have 

 1j��§Z%���§k = ���§D + �1 − ����§=               (3.2) 

Equating this to 1j��§Z%���§k in assumption A3 we get  

�I­� = �D + �1 − ��=                         (3.3) 

And solving for � we have that 

� = j[]®xHUkTHU                                     (3.4) 

In addition to this, at the expiry time � = �¯Z% = � there 

are ° + 1 possible asset prices. 

3.1. Numerical Examples 

3.1.1. Example 1 

The current security price is $100. The exercise price on 

the option is $110. It will either go up to $150 or down to $90. The riskless rate of interest is 5%. Maturity is 360 

days, � = 1. 

1. Calculate the price of the call option, the hedge ratio, 

and the probabilities of the up and down movements 

using Cox, Ross and Rubinstein model. Compare the 

result with the price calculated using BSM model. 

Calculate the present value of the ending payoff. 

2. Calculate the weights for the replicating strategy, the 

ending payoff of the call option and the price of the 

call option. The bond price is $100. 

Solution 

Table 1. Parameters 

Security price Exercise price The payoff of the call option 

150 110 �T = 40 90 110 �U = 0 

The hedge ratio:  

ℎ = H�*WH*X��³WH³X� = H�%´�Hµ�����H�� = H¶��� = −1.50  

The ending payoff: 
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· = �T + ℎ�T = 150 + �−1.50�40  																											= 150 − 60 = 90.0 · = �U + ℎ�U = 90 + �−1.50�0  																													= 90 + 0 = 90  

E = *Y�%ZI��H*X*WH*X = %��j%Z�.�´�%�kHµ�%´�Hµ� = 0.25  

� = J³WZ�%HJ�³X�%ZI�� = �.&´����Z�%H�.&´��5%Z��.�´��%�6 = 9.5238 ≅ 9.52  

The option premium using Black-Scholes model: 

The present value of the ending payoff: 

·� = ¹�%ZI�� = µ�.�%.�´×% = µ�%.�´ = 85.71  

·� = �� + ℎ� = 100 + �9.52��−1.50� = 85.71  

b. �� = ³WH³X*WH*X = H%» = H%H%.´� = 0.6667 = 66.7%  

�¼ = ³X*WH³W*X�*WH*X�½ ; �ℎ���	� = ·�t=	����� = $100  

�¼ = ��%´��H���µ���%´�Hµ��%�� = �H7¶��¶�×%�� = H7¶��¶��� = −0.60 = −60.0%  

�T = ���T +�¼� = ¶¶.¿%�� �150� + "− ¶�.�%��) 100 = 40  

�U = ���U +�¼� = ¶¶.¿%�� �90� + "− ¶�.�%��) 100 = 0  

� = ���� +�¼�� = ¶¶.¿%�� �100� + "− ¶�.�%��) 95 = 9.7  

where the riskless rate of interest, � = 5%  is being 

deducted from the bond price so that �� = 95 

3.1.2. Example 2 

Consider a standard option that expires in three months 

with an exercise price of $65 . Assume that the underlying 

stock pays no dividend, trades at $60 , and has a volatility 

of 30% per annum. The risk-free rate is 8% per annum. 

We compute the values of both European and American 

style options using Binomial model against Black-Scholes 

model as we increase the number of steps with the 

following parameters: 

60, 65, 0.25, 0.08, 0.30S K T r σ= = = = =  

The Black-Scholes price for call and put options are 

2.1334 and 5.8463  respectively. 

The results obtained are shown in Table 2 below 

Table 2. The Comparative Results Analysis of the Binomial Model and 

Black Scholes Value ( 2.1334, 5.8463)C PB B= =
 
of the Standard Option 

N 
European 

Call, CE  

American 

Call, CA  

European 

Put, 
pE  

American 

Put, 
pA  

20 2.1755 2.1755 5.8884 6.1531 

40 2.1409 2.1409 5.8538 6.1283 

60 2.1227 2.1227 5.8356 6.1178 

80 2.1315 2.1315 5.8444 6.1246 

100 2.1375 2.1375 5.8504 6.1280 

120 2.1375 2.1375 5.8523 6.1287 

140 2.1394 2.1394 5.8523 6.1282 

160 2.1384 2.1384 5.8513 6.1274 

180 2.1369 2.1369 5.8499 6.1262 

200 2.1369 2.1369 5.8481 6.1249 

220 2.1334 2.1334 5.8463 6.1237 

240 2.1315 2.1315 5.8444 6.1225 

260 2.1305 2.1305 5.8435 6.1224 

280 2.1324 2.1324 5.8453 6.1235 

300 2.1337 2.1337 5.8466 6.1243 

3.1.3. Example 3 

Consider pricing a vanilla option on a stock paying a 

known dividend yield with the following parameters: 

� = 50, � = 0.1, � = 0.5, - = 0.25, À = %¶ , Á = %&�  
The results obtained are shown in Table 3 below 

Table 3. Out of the Money, at the Money, and in the Money Vanilla 

Options on a Stock Paying a Known Dividend Yield. 

K Ecall Acall 

Early 

exercise 

premium 

Eput Aput 

Early 

exercise 

premium 30 18.97 20.50 1.53 0.004 0.004 0.00 45 6.06 6.47 0.41 1.37 1.49 0.12 50 3.32 3.42 0.10 3.38 3.78 0.40 55 1.62 1.63 0.01 6.40 7.31 0.91 70 0.11 0.11 0.00 19.19 21.35 2.16 

3.1.4. Example 4 

We value an European put option given two different 

current stock prices �� = $40 and �� = $36, two times to 

expiration, � = 1  and � = 0.5  and two volatility rates, - = 0.4 and - = 0.2. The strike price is � = $40 and the 

risk-free rate of return is � = 0.06. The results obtained are 

shown in the Table 4 below. 

Table 4. The Comparative Results Analysis of Finite Difference Method and Binomial Tree Pricing in the Context of Black-Scholes Model 

 
Black-

Scholes 

Price 

Binomial Model Binomial Model Finite difference Implicit approach Finite difference Explicit approach 

European Price American Price European price American price European price American price �� = 40 � = 1; - = 0.4 
5.05962 5.05885 5.31792 5.04698 5.29048 5.10884 5.32085 

�� = 36 � = 1; - = 0.4 
6.71140 6.71118 7.10897 6.70245 7.08102 6.75919 7.1119 
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Black-

Scholes 

Price 

Binomial Model Binomial Model Finite difference Implicit approach Finite difference Explicit approach 

European Price American Price European price American price European price American price �� = 40 � = 0.5; - = 0.4 

3.86569 3.86513 3.97775 3.85803 3.96196 3.90376 3.97910 

�� = 40 � = 1; - = 0.2 

2.06640 2.06600 2.31943 2.06137 2.30280 2.08613 2.32199 

 
Binomial tree however is pretty much straight forward 

for implementation especially using Matlab. 

3.2. Discussion of Results 

We can see from Table 2 that Black-Scholes formula for 

the valuation of European call (Ecall) option can be used to 

value its counterpart American call (Acall) option for it is 

never optimal to exercise an American call option before 

expiration. As we increase the value of _, the value of the 

American put (Aput) option is higher than the corresponding 

European put (Eput) option as we can see from the above 

Table 2 because of the early exercise premium. Sometimes 

the early exercise of the American put option can be optimal. 

Table 2 also shows that the binomial model converges faster 

and close to the Black-Scholes value as the value of _  is 

doubled. This method is very flexible in pricing vanilla 

options. 

Table 3 shows that the American option on the dividend 

paying stock is always worth more its European 

counterpart. For a very deep in the money American option 

has a high early exercise premium. The premium of both 

put and Call option decreases as the option goes out of the 

money. The American and European call options are not 

worth the same as it is optimal to exercise the American 

call early on a dividend paying stock. For a deep out of the 

money American and European call options are worth the 

same; this is due to the fact that they might not be exercised 

early as they are worthless.  

For Example 4, we assume 2000  time-steps for the 

binomial trees. For the implicit finite difference method, we 

have assumed 2000steps for the stock price and 50 time-

steps that the American option can be exercised. For the 

explicit approach we assumed 200 steps for the stock price 

and 8000  time-steps due to the instable nature of this 

method. We have also used the control variant technique in 

the results obtained by the explicit approach, using the 

price of a similar European option obtained by the use of 

explicit finite difference approach as control variant, and 

Black-Scholes framework as an analytic solution. Table 4 

shows that binomial model agrees with Black-Scholes 

values for a European price. Also binomial model and finite 

difference methods perform better when pricing American 

options. Hence we can deduce that binomial model 

converges faster to the Black-Scholes model when pricing a 

European option. This model is also good for pricing 

American option due to early exercise premium but path 

dependent options remain problematic. 

4. Conclusion  

Options come in many different flavours such as exotic 

options, fixed exercise time or early exercise options and so 

on. Binomial model is suited to dealing with some of these 

option flavors. 

In general, binomial model has its advantages and 

disadvantages of use as listed below. 

4.1. Advantages of Binomial Model 

• Using the numerical approach of binomial model we 

can calculate the American option price as well s the 

European option price. 

• Pharmaceutical companies benefit from the use of 

Binomial model method for real option valuation 

instead of older analysis as they deal with projects 

which have high risk and great uncertainty. 

• Telecommunications sector which operates in a 

market that is highly volatile with projects in the 

industry that face considerable uncertainty and 

competition also uses Binomial model method to 

illustrate how the real option analysis can be used to 

help these industries make better investment 

decisions. 

• The binomial model is much more capable of handling 

early exercise because it considers the cash flow at 

each time period rather than just the cash flows at 

expiration. 

• Binomial model works for path dependent options. 

4.2. Disadvantages of Binomial Model 

• The binomial model is quite hard to adapt to more 

complex situations. 

• Sometimes, though not at all times, the model fails to 

account for the value of managerial flexibility 

inherent in many types of project. 

• The binomial model though can use a variant that 

allows the estimation of up and down movements in 

stock prices from the estimated variance; it can’t 

accurately determine what stock prices will be at the 

end of each period. 

• Another major limitation of the binomial options 

pricing model is its slow speed. 

• Also one of the key weaknesses is whether or not the 

assumptions made to simplify the model are likely to 

be true in a real life situation. 

• They are not identical to the authentic items. 



30  Fadugba Sunday Emmanuel et al.:  Performance Measure of Binomial Model for Pricing American and European Options 
 

The binomial model is good for pricing options with 

early exercise opportunities, accurate, converges faster and 

it is relatively easy to implement but can be quite hard to 

adapt to more complex situations. 

AMS Subject Classification: 34K50, 35A09, 91B02, 

91B24, 91B25 
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