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Abstract: Integral Representation Method (IRM) is one of convenient methods to solve Initial and Boundary Value Problems 

(IBVP). It can be applied to irregular mesh, and the solution is stable and accurate. IRM is developed to Generalized Integral 

Representation Method (GIRM) to treat any kinds of problems including nonlinear problems. In GIRM, Generalized 

Fundamental Solution (GFS) is used instead of Fundamental Solution (FS) in IRM. Since GFS is not limited to one, the effects of 

individual GFSs must be clarified. The continuity of GFS is related to the characteristics of individual GFSs.  
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1. Introduction 

Integral Representation Method (IRM) [1-3] is one of 

convenient methods to solve Initial and Boundary Value 

Problems (IBVP). It can be applied to irregular mesh, and the 

solution is stable and accurate. IRM was originally developed 

to solve linear boundary value problems, and the Fundamental 

Solution (FS) of the original differential equation plays a 

major role in IRM. IRM is developed to Generalized Integral 

Representation Method (GIRM) [4-7] to treat any kinds of 

problems including nonlinear problems. GIRM uses 

Generalized Fundamental Solution (GFS). GFS is not required 

to satisfy the differential equation of the original problem. We 

can use various GFSs for an individual problem.  

Since GIRM is not limited to one, the effects of individual 

GFSs must be clarified. The continuity of GFS is related to the 

characteristics of individual GFSs. For example, in 

one-dimensional case, GFSs with discontinuous and 

continuous slopes show quite different property. Furthermore, 

the degree of continuity has important effects on the property.  

GIRM is classified into 1-Step and 2-Step GIRMs. The 

effects of the continuity of GFS are different between 1-Step 

and 2-Step GIRMs. Since 1-Step GIRM is impossible for 

multi-dimensional convective problems, 2-Step GIRM is very 

important for the problems. For simplicity, we discuss 

one-dimensional advective diffusion problems in the present 

paper. 

2. Initial and Boundary Vale Problem 

(IBVP) and Generalized Integral 

Representation Method (GIRM) 

2.1. Most Basic Problems 

For simplicity, we discuss one-dimensional problems. The 

following five cases would be the most basic problems to 

discuss Initial and Boundary Value Problems (IBVP): 

(a) Pure advection problem: 

0=
∂
∂+

∂
∂

x

C
U

t

C
 in LxL <<−  for 0>t ,    (1) 

where ),( txC  and U  are concentration of substance and 

advection velocity in region LxL <<− , respectively. The 

dependent variables t  and x  refer to time and space 

coordinate, respectively. 

(b) Pure convection problem: 

0=
∂
∂+

∂
∂

x

u
u

t

u
 in LxL <<−  for 0>t ,     (2) 
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where ),( txu  is velocity of fluid flow. 

(c) Pure diffusion problem: 

2

2
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C
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C

∂
∂=

∂
∂ κ  in LxL <<−  for 0>t ,       (3) 

where κ  is coefficient of diffusion.  

(d) Diffusion problem in advection: 
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C
U

t
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∂
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∂
∂ κ  in LxL <<−  for 0>t .   (4) 

(e) Diffusion problem in convection or Burgers’ equation:  
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∂
∂ κ  in LxL <<−  for 0>t .   (5) 

The boundary and initial conditions are given by 

LgtL
u

C
−=−









),( , LgtL
u

C
+=+









),(  for 0>t ,  (6) 
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

 in LxL +<<− ,       (7) 

respectively, where Lg−  and Lg+  are given constants, and 

)(xf  is a given function. 

We must notice the difference of the fundamental 

characteristics of advection, convection and diffusion. 

2.2. 1-Stept GIRM 

We discuss numerical solutions of Initial and Boundary 

Value Problem (IBVP) of advective diffusion. For simplicity, 

the discussions are confined to the one-dimensional problems. 

The differential equation, boundary condition and initial 

condition are given by Eqs. (4), (6) and (7), respectively. 

We summarize One-Step Generalized Integral 

Representation Method (1-Step GIRM) [7]. Multiplying a 

function ),(
~ ξxG  of x  and ξ  on both side of Eq. (4) 
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Rewriting Eq. (8) and exchanging x  and ξ , we obtain 
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where ),(
~ ξxG  is a Generalized Fundamental Solution (GFS) 

chosen properly, for example, Gaussian GFS:  
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


 −−=
2

2

2

)(
exp

2

1
),(

~

γ
ξ

γπ
ξ x

xG          (10) 

Equation (9) is a generalized integral representation of Eq. 

(4). This integral representation is applied to numerical 

solution. If we know ),( txC  in LxL ≤≤− , Eq. (9) is an 

integral equation with unknowns ttxC ∂∂ ),(  in LxL <<− , 

),( tLCx −  and ),( tLCx , where ),( ξxG  is the kernel 

function of the integral equation. Namely, we can obtain 

),( txC  numerically, if we use, for example, the following 

explicit time evolution process: 

Let ),( txC  be known at time t  →  

Obtain ttxC ∂∂ ),(  from Eq. (9) →  

Then ttxCdttxCdttxC ∂∂+=+ ),(),(),(  →  

Add dt  to t  →  Repeat.           (11) 

2.3. 2-Step GIRM 

Now, we summarize Two-Step Generalized Integral 

Representation Method (2-Step GIRM) [7]. We rewrite the 

basic equations Eq. (4) as follows: 

Non-uniformity equation: 

x

C

∂
∂=θ .                 (12) 

Constitutive equation: 

θκ−=q .                (13) 

Equilibrium equation: 

x

q

x

C
U

t

C

∂
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∂
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∂
∂

.            (14) 

Multiplying ),(
~ ξxG  on the both sides of Eq. (12) and 

integrating in region LxL <<− , we obtain 
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∫∫
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where 

),(
~),(
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ξδξ
x

x
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∂
.             (16) 

Rewriting Eq. (15) and exchanging x  and ξ , we obtain a 

generalized integral representation for Eq. (12): 
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A generalized integral representation of Eq. (14) is 

obtained similarly. Multiplying ),(
~ ξxG  on the both sides of 

Eq. (14) and integrating in region LxL <<− , we obtain 
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Rewriting Eq. (18) and exchanging x  and ξ , we obtain a 

generalized integral representation of Eq. (14): 
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Then, we can obtain ),( txC  numerically, if we use, for 

example, the following explicit time evolution process: 

Let ),( txC  be known at time t  →  

Obtain ),( txθ  from Eq. (17) →  

Obtain ),( txq  from Eq. (13) →  

Obtain ttxC ∂∂ ),(  from Eq. (19) →  

Then ttxCdttxCdttxC ∂∂+=+ ),(),(),(  →  

Add dt  to t  →  Repeat.           (20) 

3. Generalized Fundamental Solution 

(GFS) 

In one-dimension, we can consider various kinds of GFSs. 

The most basic GFS are Harmonic and Gaussian GFSs. In the 

following, we classify GFSs by the continuity. 

3.1. 
0C  Continuous GFS 

3.1.1. Harmonic GFS 

||
2

1
),(

~ ξξ −= xxG ,            (21a) 

)sgn(
2

1),(
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∂
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)(
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2
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ξδξ −=
∂

∂
x

x

xG
,           (21c) 

where δ  is Dirac’s delta function. ),(
~ ξxG  is called 

harmonic GFS, since it is the one-dimensional fundamental 

solution of Laplace operator:  

⋯+
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yx 2
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3.1.2. Triangle GFS 
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3.1.3. Exponential GFS 
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3.1.4. 0C  Gaussian GFS 
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3.2. 1C  Continuous GFS 

3.2.1. Finite Support Gaussian GFS 1 
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3.2.2. Finite Support Gaussian GFS 2 









−≤

<−








 −−






 −
=

||,0

||,
2

)(
exp

2

)(
cos

),(
~ 2

2
2

ξ

ξ
γ
ξξπ

ξ
xh

hx
x

h

x

xG , (27a) 
















−≤

<−








 −
−⋅

⋅














 −−






 −−

=
∂

∂

||,0

||,
2

)(
exp

2

)(
cos

)(
sin

2

),(
~

2

2

2

2

ξ

ξ
γ
ξ

ξπ
γ

ξππ

ξ

xh

hx
x

h

xx

h

x

h

x

xG , (27b) 

,

||,0

||

2

)(
exp

2

)(
cos

)(
sin

)(

)(
cos

2

),(
~

2

2

2

4

2

2

2

2

2

2





















−≤

<−










 −−


































 −+








 −−+








 −−

=
∂

∂

ξ

ξ

γ
ξ

ξπ
γ

ξπ
γ

ξπ

ξππ

ξ

xh

hx

x

h

xx

h

x

h

x

h

x

h

x

xG . (27c) 

3.3. 2C  Continuous GFS [8-10]
 

3.3.1. Lucy GFS 
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3.3.2. Cubic Spline GFS 
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3.4. ∞C  Continuous GFS 

Gaussian GFS 
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4. Comparison of Individual Generalized 

Fundamental Solution (GFS) 

In the following numerical calculations, the region 

LxL +<<−  is divided into N  intervals:  

dxiLxi )5.0( ++−= , 1,,1,0 −= Ni ⋯ .      (31) 

The following discretization is used: 
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The slope at the boundary is approximated by 

)),2((
2

),( Lx gtdxLC
dx

tLC −−+−=− ,      (33a) 

)),2((
1

),( tdxLCg
dx

tLC Lx −+−=+ + .     (33b) 

 

4.1. Accuracy Check of GIRM Solutions for Continuous 

Initial Value Distribution and Zero Boundary Values 

Accuracy check is conducted for the exponential initial 

condition with zero boundary values. The boundary and initial 

conditions are given by 

0),( =− tLC , 0),( =+ tLC  for 0>t ,      (34) 





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82

1
exp)0,(

L

x
xC  in LxL +<<− ,   (35) 

respectively. The parameters for numerical calculations in this 

section are as follows: 

2=L ; 40=N ; NLdx 2= ; 0005.0=dt ; 

dtT 1000= ; 05.0=κ ; 5.1=U .      (36) 

The numerical results are shown Fig. 1. In case of zero 

boundary values and continuous initial value distribution, 

every GFS gives the same accuracy. 

In the calculations in sections 4.2-4.4, the parameters for 

numerical calculations are as follows: 

5.0=L ; 40=N ; NLdx 2= ; 0005.0=dt ; 

dtT 16000~1000= ; 05.0=κ ; 0=U .    (37) 

4.2. Effects of Discontinuous Initial Value Distribution 

The boundary and initial conditions for the first example in 

this section are given by 

0),( =− tLC , 0),( =+ tLC  for 0>t ,      (38) 



 ≤

=
otherwise0

4/2
)0,(

LxL
xC ,           (39) 

respectively. The numerical results are shown Fig. 2. Spurious 

oscillation appears in the results using 2-Step GIRM with 

harmonic GFS. 

The initial condition for the second example is given by 










≤<+

<≤−−

=
otherwise0

20)2(1

02)2(1

)0,(
2

2

dxxdx

xdxdx

xC ,       (40) 

respectively. The numerical results are shown in Fig. 3. 

Spurious oscillation appears in the results using 2-Step GIRM 

with harmonic GFS. 

4.3. Effects of Non-zero Boundaryl Values 

The boundary and initial conditions for the first example in 

this section are given by 
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Figure 1. Exponential initial value distribution 
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1),( =− tLC , 0),( =+ tLC  for 0>t ,                             (41) 

0)0,( =xC  in LxL +<<− ,                                (42) 

respectively. The numerical results are shown in Fig. 4. The results using 1-Step GIRM with Gaussian GFS is not correct. 

Spurious oscillation appears in the results using 2Step GIRM with Gaussian GFS. 

 

Figure 2. Rectangular initial value distribution 

 

Figure 3. Doublet-like initial value distribution 
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Figure 4. Zero initial value distribution with C(-L,t)=1 and C(+L,t)=0 

 

Figure 5. Zero initial value distribution with C(-L,t)=1 and C(+L,t)=1 
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Figure 6. Step-function-like initial value distribution 

The boundary and initial conditions for the second example 

in this section are given by 

1),( =− tLC , 1),( =+ tLC  for 0>t ,       (43) 

0)0,( =xC  in LxL +<<− ,          (44) 

respectively. The numerical results are shown in Fig. 5. The 

results using 1-Step GIRM with Gaussian GFS is not correct. 

Spurious oscillation appears in the results using 2-Step GIRM 

with Gaussian GFS. 

4.4. Simultaneous Effects of Discontinuous Initial Value 

Distribution and Non-zero Boundary Values 

The boundary and initial conditions for example in this 

section are given by 

1),( =− tLC , 0),( =+ tLC  for 0>t ,        (45) 
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otherwise0
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01

)0,( x

x
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respectively. The numerical results are shown in Fig. 6. The 

results using 1-Step GIRM with Gaussian GFS is not correct. 

The spurious oscillation in the results using 2-Step GIRM with 

harmonic GFS appears because of the discontinuity in the 

initial value distribution, and that in the results using 2-Step 

GIRM with Gaussian GFS appears because of the non-zero 

boundary values. 

Table 1. 1-Step GIRM 

Continuity of G
~

 
Non-zero boundary 

value 

Discontinuous initial 

value dist.  
0C  Good Good 

1C  and 2C  Must be much improved Good 

∞C  Must be much improved Good 

Table 2. 2-Step GIRM 

Continuity of G
~

 
Non-zero 

boundary value 

Discontinuous initial value 

dist.  
0C  Good Must be slightly improved 

1C  and 2C  Good Good 

∞C  Must be improved Good 

4.5. Summary on the Effects of GFSs 

Effects of GFSs on IBVPs were investigated in Sections 4.1 

through 4.4. For zero boundary values and continuous initial 

vlaue distribution, every GFS gives accurate numerical results 

as shown in Fig. 1. However, for non-zero boundary values 

and/or discontinuous initial vlaue distribution, individual 

GIFs give different results as shown in Figs. 2-6. The 

continuity of GIFs plays an important role. The summary is 

given in Tables 1 and 2. Combination of harmonic GFS and 

1-step GIRM” seems the best in one-dimensional case. 

However, in multi-dimension, 1-Step GIRM does not exist in 

case of convection problem. In the above-mentioned 

numerical examples, explicit time evolution was used. If we 

use the implicit time evolution, the stability and accuracy 
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would be increased. 

5. Remedies for Obtaining Correct 

Solutions by GIRM in Case of 

Non-zero Boundary Values 

5.1. Remedy in Case of Non-zero Bounday Values 

In this case, we transform the non-zero bounday value 

problem into the zero boundary value problem. When the 

steady state solution )(0 xC  satisfying 

2

0

2

0

dt

Cd

dx

dC
U κ=  in LxL +<<− ,       (47) 

LgLC −=− )(0 , LgLC +=+ )(0         (48) 

is known, we rewrite ),( txC  as 

),()(),( 10 txCxCtxC +=  or )(),(),( 01 xCtxCtxC −= . (49) 

Substituting Eq. (49) into Eqs. (4), (6) and (7), we have  

2

1

2

11

t

C

x

C
U

t

C

∂
∂=

∂
∂+

∂
∂ κ  in LxL +<<−  for 0>t , (50) 

0),(1 =− tLC , 0),(1 =+ tLC  for 0>t ,     (51) 

)0,()()0,( 01 xCxfxC −=  in LxL +<<− .    (52) 

The non-zero bounday value problem is now transformed into 

the zero boundary value problem. For example, the boundary 

and initial values for the transformed problem of the original 

problem shown in Fig. 5(b) are given by 

0),(1 =− tLC , 0),(1 =+ tLC  for 0>t ,     (53) 

1)0,(1)0,( 01 =−= xCxC  in LxL +<<− ,    (54) 

respectively. The numerical results are shown in Fig. 7. If 

),()(),( 10 txCxftxC −=  is obtained, ),(0 txC  gives the 

correct solution for the original problem.  

For another example, the boundary values and initial value 

distribution for the transformed problem of the original 

problem shown in Fig. 6(b) are given by 

0),(1 =− tLC , 0),(1 =+ tLC  for 0>t ,      (55) 

 

Figure 7. Transformed version of step-function-like initial value distribution 

 

Figure 8. Transformed version of step-function-like initial value distribution 
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respectively. The numerical results are shown in Fig. 8. If 

),()(),( 10 txCxftxC −=  is obtained, ),(0 txC  gives the 

correct solution for the original problem. 

5.2. Remedies in Case of Discontinuous Initial Value 

Distribution 

In this case, small amount of artificial damping is effective 

to reduce spurious oscillation [11,12]. Specifically, for 

example, a numerical damping: 

( )



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 ++−− −+
)(

1

)()(

1

)(

2
2

4

14 n

i

n

i

n

i

n

i CCCC
dx

α
       (57) 

is added to )(n

iC  at every time step n  of the time evolution 

of )(n

iC , where α  is damping constant. For example, with 

respect to the problem shown in Fig. 2(a), the numerical 

results are shown in Fig. 9, where the artificial damping 

coefficient 000005.0=α  is used. The spurious oscillation is 

elliminated. 

 

Figure 9. Rectangular initial value distribution (Harmonic GFS, 2-Step; 

α=0.000005) 

For example, with respect to the problem shown in Fig. 6(a), 

the numerical results are shown in Fig. 10, where the artificial 

damping coefficient 000005.0=α  is used. The spurious 

oscillation is elliminated. 

The other method is to use initial filter. If the discontinuity 

of initial density distribution invites serious errors, it is 

effective to replace )0,()0(

ii xCC =  with a filtered value such 

as 

( ))0(

1

)0()0(

1 2
4

1
−+ ++ iii CCC .              (58) 

 

Figure 10. Rectangular initial value distribution (Harmonic GFS, 2-Step; 

α=0.000005) 

6. Conclusions 

Integral Representation Method (IRM) is developed to 

Generalized Integral Representation Method (GIRM) and can 

treat any kinds of problems including nonlinear problems. 

GIRM uses Generalized Fundamental Solution (GFS) instead 

of Fundamental Solution (FS). We can use various GFSs for 

an individual problem. The characteristics of individual GFSs 

were clarified in the present paper. The continuity of GFS is 

related to the characteristics of individual GFSs. For example, 

in one-dimensional case, GFSs with discontinuous and 

continuous slopes showed quite different property. 

Furthermore, the degree of continuity had important effects on 

the property. For simplicity, we discussed one-dimensional 

advective diffusion problems.  

The effects of the continuity of GFS were different between 

1-Step and 2-Step GIRMs. Since 1-Step GIRM is impossible 

for multi-dimensional convective problems, 2-Step GIRM is 

very important for the problems. When the boundary values 

were not zero, 1- and 2-Step GIRMs using Gaussian GFS gave 

unsatisfactory results. 1-Step GIRMs using C
1
 nd C

2
 

continuous GFSs gave also unsatisfactory results. When the 

initial value distributions were discontinuous, 2-Step GIRM 

using GFSs with discontinuous slope gave unsatisfactory 

results. The remedies to these cases were given in section 5. 
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